Calculus and Vectors – How to get an A+ 1.5 Properties of Limits A Limits Properties We assume that lim f ( x) and lim g ( x) exist. Then: Ex 1. Given lim f ( x) = −2 and lim g ( x) = 1 , use the limits 1. lim k = k properties to find lim x→a x→a x →3 x →3 2 f ( x) + g ( x) − 4 g ( x) x→3 x →a 2. lim x = a x →a 3. lim[ f ( x) ± g ( x)] = lim f ( x) ± lim g ( x ) x →a x→a lim x →a x →a x→3 7. lim[ f ( x)] = [ lim f ( x] x →a lim[−4 g ( x) ] = x→3 x→3 = 2 lim f ( x) + lim g ( x) x→3 x→3 x→3 − 4 lim g ( x) = x→3 2(−2) + 1 − 4 +1 3 = = = −4 4 −4 1 2 f ( x) + g ( x) 3 ∴ lim = x→3 − 4 g ( x ) 4 6. lim[ f ( x) g ( x)] = [ lim f ( x)][ lim g ( x)] x →a x→3 − 4 lim g ( x) x →a n lim[2 f ( x) + g ( x )] lim[2 f ( x)] + lim g ( x) f ( x) f ( x) xlim 5. lim = →a , lim g ( x) ≠ 0 x →a g ( x ) lim g ( x ) x→a x →a = − 4 g ( x) x→3 4. lim[cf ( x)] = c lim f ( x) x →a 2 f ( x) + g ( x) . x →a n x→a 8. If P(x) is a polynomial function, then lim P ( x) = P (a ) x →a B Substitution Substitution is the best strategy to find a limit. Note: Substitution does not work if (by substitution) you get one of the following 7 indeterminate cases: 0 ∞ ∞ ∞ − ∞ 0×∞ 1 ∞ 0 00 0 ∞ Specific strategies are available to avoid an indeterminate case to appear. C Factoring 0 The indeterminate form may be eliminated by 0 factoring and canceling out the common factor that generates zeros: F ( x) ( x − a) f ( x) f ( x) lim = lim = lim x →a G ( x ) x →a ( x − a ) g ( x ) x →a g ( x ) Note: Canceling out the common factor ( x − a ) is a correct operation because lim means that x→a x2 − 2x +1 . x →2 x −1 Ex 2. Compute lim x 2 − 2 x + 1 2 2 − 2(2) + 1 4 − 4 + 1 = =1 = x →2 x −1 1 2 −1 x 2 − 2x + 1 =1 ∴ lim x→2 x −1 lim x2 + x − 2 . x→1 x −1 Let’s try substitution: x 2 + x − 2 12 + 1 − 2 0 = (indeterminate case) lim = x→1 x −1 1−1 0 First, we have to cancel out the common factor: x2 + x − 2 ( x − 1)( x + 2) = lim( x + 2) = lim lim x→1 x→1 x→1 x −1 x −1 Second, we can use substitution: lim( x + 2) = 1 + 2 = 3 Ex 3. Compute lim x→1 x approaches a but is not equal to a . x2 + x − 2 =3 x→1 x −1 ∴ lim D Conjugate Radicals 0 you 0 may use the conjugate radicals to cancel out the common factor that generates zeros. When dealing with the indeterminate form Ex 4. Compute lim x→0 x+4 −2 . x 0 ). 0 ( x + 4) − 2 2 Substitution does not work (case x+4 −2 x x+4 +2 = lim = x( x + 4 + 2) x 1 1 1 = lim = lim = = x →0 x ( x + 4 + 2 ) x→0 x + 4 + 2 0+4 +2 4 lim x→0 x+4 +2 1.5 Properties of Limits ©2010 Iulia & Teodoru Gugoiu - Page 1 of 2 x →0 Calculus and Vectors – How to get an A+ E Change of Variables x −1 . By changing the variable, the process of canceling Ex 5. Change the variable to compute lim 3 x→1 x − 1 the common factor may be simplified. 1 1 Note. If the change of variable is u = g (x) then: as x → a , u → g (a) x = x2, 2 u = 1 (x 6 )2 3 = 1 x3 x →1 ⇒ u x −1 lim x→1 3 x −1 = lim u →1 F Absolute Value Function When dealing with an absolute value function, rewrite it as piece-wise defined function according to: ⎧ f ( x), f ( x) ≥ 0 | f ( x) |= ⎨ ⎩− f ( x ), f ( x ) < 0 b) lim x | x | u −1 2 = 1 x2 = x =1 3 u →1 u 2 1 ( x 6 )3 −1 (u − 1)(u 2 + u + 1) = u →1 (u − 1)(u + 1) = lim 2 u + u +1 1 +1+1 3 x −1 3 = = , ∴ lim = 3 1 x → u +1 1+1 2 x −1 2 Ex 6. Compute each limit. Draw a diagram to illustrate. |x| a) lim x→0 x ⎧ x, x ≥ 0 | x | ⎧1, x > 0 | x |= ⎨ ⇒ =⎨ x ⎩− 1, x < 0 ⎩− x , x < 0 | x| = lim− (−1) = −1, x→0 x x →0 | x| ∴ lim = DNE x→0 x lim− lim+ x →0 |x| = lim 1 = 1 x x →0 + x2 x→0 | x | ⎧⎪ x 2 , x ≥ 0 x | x |= ⎨ ⎪⎩− x 2 , x < 0 lim x | x |= lim− (− x 2 ) = 0, x →0 ∴ lim x | x |= 0 x →0 = x, u = 1 → 16 = lim 3 3 c) lim x→0 x →0 − 1 x = x 3 , LCD = 6, u = x 6 lim x | x |= lim+ x 2 = 0 x →0 + x →0 x 2 ⎧ x, x > 0 =⎨ | x | ⎩− x , x < 0 lim− x→0 x2 = lim x = 0, | x | x →0 − lim+ x→0 2 x =0 x→0 | x | ∴ lim Reading: Nelson Textbook, Pages 40-45 Homework: Nelson Textbook: Page 45 #4f, 7, 8, 9, 10, 13b, 14b, 16, 17 1.5 Properties of Limits ©2010 Iulia & Teodoru Gugoiu - Page 2 of 2 x2 = lim (− x) = 0 | x | x →0 +
© Copyright 2026 Paperzz