CP violation from a combined Beta Beam and Electron Capture neutrino experiment Catalina Espinoza U. Valencia and IFIC NUFACT09 Chicago, July 2009 Work in collaboration with J. Bernabeu, C. Orme, S. Palomares-Ruiz and S. Pascoli based on JHEP 0906:040, 2009 1 Programme What is known, what is unknown in Neutrino Oscillations CP Violation without antineutrinos: Energy Dependence A combined BB and EC experiment for the same ion Ytterbium Comparison between different baselines and boosts: i) low energy (Ep(SPS) ≤ 450 GeV, 130 km and 650 km) ii) high energy (Ep(SPS) ≤ 1000 GeV, 650 km and 1050 km) CP-Violation Discovery Potential and Mass Hierarchy Determination Conclusions 2 What is known, what is unknown Neutrino flavour oscillations m 23 2.4 10 eV m 212 7.65 10 5 eV 2 13 10o , A hint ? 2 3 2 sin 23 0.50 2 sin 12 0.304 2 ? Absolute neutrino masses ? 3 H beta, Cosmology Form of the mass spectrum Matter effect in neutrino propagation Majorana neutrinos? 0: masses and phases 3 The Pontecorvo MNS Matrix e 1 U 2 3 After diagonalization of the neutrino mass matrix, Even if they are Majorana For Flavour oscillations U: 3 mixings, 1 phase 0 c13 1 0 U 0 c23 s23 0 i 0 s23 c23 s13e Atmospheric KEK, MINOS, OPERA i 0 s13e c12 s12 0 1 0 s12 c12 0 0 c13 0 0 1 •Appearance e! •Reactors •Matter effects Solar KAMLAND Borexino 4 Three Generations of Experiments • 0. Only three? MiniBoone • I. Solar Sector, Atmospheric Sector Δ Δm212, θ12 │Δm223│, θ23 Borexino MINOS, OPERA • II. Connection between both Sectors θ13, θ Double CHOOZ, Daya Bay, T2K, NOVA, … Sign (Δm223) • III. CP-Violating Interference δ Super-Beams? Beta / EC Beams? Neutrino Factory? 5 Third Generation Experiments: CP Violation • European Strategy Plan demands for ~ 2012 a CDR with the alternatives: SuperBeams, Beta/EC Beams, Neutrino Factory. • SuperBeam: no pure Flavour, uncertain continuous Spectrum. • Beta Beam: pure Flavour, known continuous Spectrum. • EC Beam: pure Flavour, known single Monochromatic Beam. • Neutrino Factory: pure Flavour iff detector with charge discrimination, known continuous Spectrum. Frejus • CP Violation can be observed either by an Asymmetry between Neutrinos and Antineutrinos or by Energy Dependence (CP phase as a phase shift) in the Neutrino channel, or both. 6 Why Energy Dependence ? A theorem CP violation: P( e ) P( e ) CPT invariance + CP violation = T non-invariance P( e ) P( e ) No Absorptive part Hermitian Hamiltonian CP odd = T odd = P( ) P( ) e e is an odd function of time = L ! • In vacuum neutrino oscillations for relativistic neutrinos L/E dependence, so CP-even (odd) terms in the appearance probability Even (odd) functions of energy. Then ENERGY DEPENDENCE disentangles the CP-even and CP-odd terms7 Interest of energy dependence in suppressed neutrino oscillations • CP violation accessible in suppressed appearance experiments, in order to have access to the interference between the atmospheric and solar probability amplitudes • Appearance probability: m L P ( e ) s sin 213 sin ( ) 4 E 2 23 2 2 2 13 Atmospheric m L 2 c23 sin 2 212 sin 2 ( ) 4 E 2 12 Solar 2 2 2 m13 L m12 m13 L L ~ J cos( ) sin( ) E 4E E 4 4 |Ue3| gives the strength of P(νe→νμ) • δ gives the interference pattern: CP odd term is odd in E/L • • δ acts as a phase shift Interferen ce This suggests the idea of using either a monochromatic neutrino beam to separate δ and |Ue3| by energy dependence with different boosts, or a combination of channels with 8 different neutrino energies in the same boost Neutrinos from β+/ Electron Capture β+ decay: P. Zucchelli, Phys.Lett.B532:166-172, 2002 boost ● Forward direction 3 body decay Eν From the well-known β-decay neutrino spectrum, we can get a pure beam by accelerating β-unstable ions • Electron capture: d 2 N N iones 2 y 2 (1 y ) (1 y ) 2 y e2 2 dSdE L g ( y e ) J. Bernabeu, et al boost Z protons N neutrons ● Z-1 protons N+1 neutrons Forward direction 2 body decay! In the CM , a single discrete energy If a single final nuclear level is populated • Eν Eν From the single energy EC neutrino spectrum, we can get a pure and monochromatic beam by accelerating ec-unstable ions and choosing forward ν’s One can concentrate all the intensity at the most appropriate energy 9 for extracting the neutrino parameters A combined Beta Beam and EC 156 neutrino experiment ( 70Yb) Isotopes with favourable decaying properties: • In proton rich nuclei (to restore the same orbital angular momentum for protons and neutrons) Superallowed Gamow-Teller transition The “breakthrough” came thanks to the recent discovery of isotopes with small half-lives of one min or less, which decay in neutrino channels near 100% to a SINGLE Gamow-Teller resonance. ● • The interesting isotopes have to have half-life < vacuum half-life ~ few min. Nuclear Ion Candidate: Ytterbium ( 156 70Yb ) half-life: 26.1 sec Decay Daughter Neutrino Energy (MeV) BR β+ EC α 156Tm* 2.44 (endpoint) 3.46 52 % 38 % 10 % 156Tm* 152Er* 10 A combined beta-beam and EC 156 neutrino experiment ( 70Yb) • Suppressed appearance probabilities for the CERN-Frejus (130 Km, red line) and CERN- Gran Sasso o Canfranc (650 Km, blue line) baselines. The unoscillated neutrino flux is shown for γ=166 • Suppressed appearance probabilities for the CERN-Gran Sasso o Canfranc (650 Km, blue line) and CERN-Boulby (1050 Km, red line) baselines. The unoscillated neutrino flux is shown for 11 γ=369 Experimental Setups for the combined experiment • Appearance Experiment : Electron Neutrino Flux × Oscillation Probability to muon neutrinos × CC Cross Section for muon production. Setups: • Boost γ=166 with current SPS I: CERN-Frejus (130 Km) II: CERN-Gran Sasso or Canfranc (650 Km) • Boost γ=366 with an upgraded SPS III: and III-WC: CERN-Gran Sasso or Canfranc (650 Km) IV: and IV-WC: CERN-Boulby (1050 Km) Detectors: • LAr or TASD, 50 kton Neutrino spectral information from CC muon events • Water Cerenkov, 0.5 Mton Neutrino energy from QE events only + inelastic events in a single bin, with 70% efficience • Number of decaying ions per year: 2 x 1018 10 years • The separation between the energy of the EC spike and the end point energy of the beta-spectrum is possible: if Eν(QE) > 2γEo(β), since Eν(true) > Eν(QE), the event must be attributed to the EC flux and hence, it is not necessary to reconstruct the true energy 12 The virtues of combining energies from BB and EC • Sensitivity to θ13 and δ (Setup III: Gran Sasso or Canfranc ) BB EC BB+E C • The power of the combination of the two channels is in the difference in phase and in amplitude between the two fake sinusoidal solutions, selecting a narrow allowed region in the parameter space 13 Comparing baselines I and II for the same boost • For the combined BB + EC fluxes with θ13=10 and δ=900 Frejus Gran Sasso or Canfranc • The BB channel contributes very little to the overall sensitivity of the setup, due to the γ2 dependence. The bulk of the sensitivity is due to the EC 14 channel placed on the first oscillation maximum Comparing boosts II and III with the same baseline • Combination of BB and EC fluxes for θ13=10 and δ=900 γ=166 γ=369 The sensitivity is better with the upgraded SPS energy • The relative role of the two BB and EC components is exchanged when going from II to III • 15 Setup III-WC : Disentangling θ13 and δ • Solutions for Gran Sasso or Canfranc, from discrete degeneracies included, for θ13=10 , 30 and for different values of the CP phase • • The increase in event rates improves the results substantially with respect to those results for Setup III, although not as much as the size factor between the two detectors. • The mass ordering can be determined for large values of the mixing angle. • The hierarchy degeneracy worsen the ability to measure δ for negative 16 true values of δ. Comparing III-WC and IV-WC • Boulby provides a longer baseline than Gran Sasso or Canfranc. This has two contrasting effects on the sensitivity to measure CP violation: i) Sufficient matter effects to resolve the hierarchy degeneracy for small values of θ13; ii) It decreases the available statistics Gran Sasso or Canfranc Boulby • The smaller count rate results in a poorer resolution. • The longer baseline allows for a good determination of the mass ordering, eliminating more degenerate solutions. 17 CP Discovery Potential for WC Gran Sasso or Canfranc Boulby • Comparing the two locations of the WC detector, the shorter baseline has a significally (slightly) better reach for CP violation at negative (positive) values of δ than the Boulby baseline. 18 Mass hierarchy determination • Fraction of δ for which the neutrino mass hierarchy can be determined L=650 km • III-WC with present priors in the known parameters • The L=650 km • III-WC with negligible errors in the known parameters L=1050 km • IV-WC with present priors in the known parameters Boulby baseline, with its larger matter effect, is better 19 for the determination of the mass hierarchy Conclusions • The two separate channels BB and EC have a limited overlap of the allowed regions in the (θ13, δ) plane, resulting in a good resolution on the intrinsic degeneracy. • The CP phase sensitivity is obtained by only using neutrinos, thanks to the Energy Dependence of the oscillation probability with the combination of the two BB and EC channels. • THE SPS UPGRADE TO HIGHER ENERGY (Ep = 1000 GeV) IS CRUCIAL TO HAVE A BETTER SENSITIVITY TO CP VIOLATION (the main objective of the third generation neutrino oscillation experiments) IFF ACCOMPANIED BY A LONGER BASELINE ( Canfranc, Gran Sasso or Boulby). • THE BEST E/L FOR HIGHER SENSITIVITY TO THE MIXING U(e3) IS NOT THE SAME THAN THAT FOR THE CP PHASE. Like the phaseshifts, the effect of δ is easier to observe by going to the region of the second oscillation. HENCE THE IMPORTANCE OF COMBINING DIFFERENT ENERGIES IN THE SAME EXPERIMENT. 20 Conclusions • Setups III and III-WC, with the Canfranc or Gran Sasso baselines, have larger counting rates and a better tuning of the beam to the oscillatory pattern, resulting in a very good ability to measure the parameters. These setups provide the best sensitivity to CP violation for positive values of δ. • Setups IV and IV-WC, with the Boulby baseline, provide a better determination of the hierarchy and a good reach to CP violation for negative δ, even if the mass ordering is unknown. THE COMBINATION OF THE TWO BB AND EC BEAMS FROM A SINGLE DECAYING ION AND A FIXED BOOST ACHIEVES REMARKABLE RESULTS 21 Acknowledgements • Thanks to my collaborators: J. Bernabeu, J. Burguet-Castell, M. Lindroos, C. Orme, S. Palomares-Ruiz and S. Pascoli. Thank you very much for your attention… 22 Implementation • A Facility with an EC channel would require a different approach to acceleration and storage of the ion beam compared to the standard beta-beam, as the atomic electrons of the ions cannot be fully stripped • Partly charged ions have a short vacuum life-time against collisions. The interesting isotopes have to have half-life < vacuum half-life ~ few min. For the rest, setup similar to that of a beta-beam: 23
© Copyright 2026 Paperzz