Practice Final Exam 2014 Name:________________________________ Hour:______ Pre-Calculus 1. Simplify: csc ๐ cos ๐ tan ๐ sec ๐ A. cos ๐ B. sec ๐ C. 1 D. csc ๐ C. csc ๐ D. sin2 ๐ C. csc ๐ D. 1 2. Simplify: csc ๐ โ cot ๐ cos ๐ A. sin ๐ B. cot ๐ 3. Simplify: (1 โ sin2 ๐)(1 + cot 2 ๐) A. cos 2 ๐ B. cot 2 ๐ 4. Use a sum/difference formula to find the exact value of sin 105º. A. โ2โโ6 4 B. โ6+โ2 2 C. โ6โโ2 4 5. Use a double-angle formula to find sin 2x if cos ๐ฅ = A. โ โ3 2 B. โ3 2 โ3 2 24 7 B. and 1 C. โ 2 6. Use a double-angle formula to find tan 2x if sec ๐ฅ = โ A. โ D. 336 527 C. 24 7 3๐ 2 โ6+โ2 4 < ๐ฅ < 2๐. D. โ3 25 7 and 180º < x < 270º. D. โ 336 527 D. 7๐ 4 โ2 7. Find cosโ1 ( 2 ). A. ๐ 4 B. โ ๐ 4 C. 3๐ 4 7 8. Evaluate sec (tanโ1 24). A. 25 7 B. 24 25 C. 25 24 D. 24 7 D. 3๐ 4 D. ๐ 6 9. Solve: cot ๐ = 1 for all x-values in the interval [0,2๐). A. ๐ 4 and 3๐ 4 B. 3๐ 4 and 7๐ 4 C. ๐ 4 and 5๐ 4 and 5๐ 4 10. Solve: sec ๐ + 2 = 0 for all x-values in the interval [0,2๐). A. 2๐ 3 and 4๐ 3 B. ๐ 3 and 5๐ 3 C. 5๐ 6 and 7๐ 6 and 11๐ 6 11. Solve: 2 sin2 ๐ฅ + sin ๐ฅ = 0 for all x-values in the interval [0,2๐). A. 0, ๐, 7๐ 11๐ , 6 6 B. ๐ 3๐ 7๐ 11๐ , , , 6 2 2 6 C. 0, ๐, 4๐ 5๐ , 3 3 D. ๐ 3๐ 4๐ 5๐ , , , 2 2 3 3 12. Solve: cos 2๐ฅ = sin ๐ฅ for all x-values. ๐ 3 2๐ 3 + 2๐๐ ๐ 5๐ 6 + 2๐๐ ๐ 5๐ 6 + 2๐๐ 2๐ 3 + 2๐๐ A. ๐ + 2๐๐, + 2๐๐, B. 3๐ 2 + 2๐๐, 6 + 2๐๐, C. ๐ + 2๐๐, 6 + 2๐๐, D. 3๐ 2 ๐ 3 + 2๐๐, + 2๐๐, 13. Which graph represents the polar coordinate (โ3, A. B. 2๐ )? 3 C. D. 14. Convert the rectangular coordinate (5, 7) to a polar coordinate. A. (โ74, 54.50 ) B. (โ74, 35.50 ) C. (โ24, 54.50 ) D. (โ24, 35.50 ) 15. Convert the polar coordinate (-3, 240º) to a rectangular coordinate. A. (โ 3โ3 3 , โ 2) 2 3 B. (โ 2 , โ 3โ3 ) 2 3โ3 3 , ) 2 2 3 3โ3 ) 2 C. ( D. (2 , ๐ 16. Convert the polar coordinate (2, 2 ) to a rectangular coordinate. A. (0, -2) B. (0, 2) C. (2, 0) D. (-2, 0) 17. Find another polar representation of the point (โ2, ๐) where r > 0. A. (2, 3๐) B. (2, 2๐) 18. Express 4 (cos 5๐ 3 + ๐ sin A. 2 โ 2๐โ3 5๐ ) 3 C. (โ2, ๐ ) D. (โ2, 2๐) in rectangular form. B. 2โ3 โ 2๐ C. โ2 + 2๐โ3 D. โ2 โ 2๐โ3 19. Express โโ3 + ๐ in polar form. A. 2 (cos 5๐ 6 + ๐ sin 5๐ ) 6 B. 2 (cos 2๐ 3 + ๐ sin 2๐ ) 3 C. 2 (cos 11๐ 6 + ๐ sin 11๐ ) 6 ๐ ๐ D. 2 (cos 6 + ๐ sin 6 ) 5 20. Use DeMoivreโs Theorem to find (1 โ โ3๐) in polar form. A. 32 (cos 55๐ 6 + ๐ sin 55๐ ) 6 B. 32 (cos 5๐ 3 + ๐ sin 5๐ ) 3 C. 32 (cos 25๐ 3 + ๐ sin 25๐ ) 3 D. 2 (cos 21. Find the vector in component form having magnitude |๐ฏ| = 4 and direction ๐=150º. A. โฉ2, โ2โ3โช B. โฉโ2, 2โ3โช C. โฉ2โ3, โ2โช D. โฉโ2โ3, 2โช 5๐ 3 + ๐ sin 5๐ ) 3 22. Find the direction of the vector ๐ฏ = โ3๐ข + 3โ3๐ฃ. A. 300º B. 60º C. 120º D. 240º C. -30 D. 30 23. Find ๐ฎ โ ๐ฏ if ๐ฎ = โฉ2, 6โช and ๐ฏ = โฉโ3, 4โช. A. 18 B. 8 24. Find the angle between u and v if ๐ฎ = โฉ4, 7โช and ๐ฏ = โฉโ3, 5โช. A. -89º B. 61º C. 179º D. 29º 25. Find the work done by the force F = 50i โ 40j in moving an object from (-1, 5) to (60, 3). A. 3130 ft/lb B. 2630 ft/lb 26. Which is a vertex of the ellipse A. (-1, 3) (๐ฅ+1)2 25 C. 2970 ft/lb + (๐ฆ+2)2 4 D. 3030 ft/lb = 1? B. (-1, -2) C. (4, -2) D. (5, 2) 27. The endpoints of the major axis of an ellipse are (6, 3) and (-2, 3) and the endpoints of the minor axis are (2, 0) and (2, 6). Find the equation of the ellipse. A. (๐ฅโ2)2 16 + (๐ฆโ3)2 9 =1 B. (๐ฅโ2)2 9 + (๐ฆโ3)2 16 C. =1 (๐ฅโ3)2 16 + (๐ฆโ1)2 9 28. Identify the equation of the asymptotes for the graph of the hyperbola 9 A. ๐ฆ = ± 16 ๐ฅ 4 B. ๐ฆ = ± 3 ๐ฅ 29. Find the foci of the hyperbola A. (โ2 ± โ13, 1) (๐ฆโ1)2 4 C. ๐ฆ = ± โ (๐ฅ+2)2 B. (โ2, 1 ± โ13) 9 16 ๐ฅ 9 D. =1 ๐ฅ2 16 โ ๐ฆ2 9 (๐ฅโ2)2 64 B. up (๐ฆโ3)2 36 = 1. 3 D. ๐ฆ = ± 4 ๐ฅ = 1. C. (0, ±โ13) D. (โ2, 1 ± โ5) 30. In which direction does the parabola ๐ฆ 2 = โ5๐ฅ open? A. right + C. down D. left =1 31. Given that the vertex of a parabola is (4, -2) and the focus is (4, 3), find the equation of the parabola. A. ๐ฅ 2 = 20๐ฆ B. (๐ฆ + 2)2 = 20(๐ฅ โ 4) C. (๐ฅ โ 4)2 = 20(๐ฆ + 2) D.(๐ฅ โ 4)2 = 5(๐ฆ + 2) C. 1 D. 3 2 2 32. Find the sum of the sequence: โ(๐ โ 2) ๐=0 A. -1 B. 0 33. Find the nth term of the sequence: 53, 46, 39, 32, โฆ A. ๐๐ = ๐ โ 7 B. ๐๐ = โ7๐ + 46 C. ๐๐ = โ7๐ + 60 D. ๐๐ = 53(โ7)๐โ1 34. Find the next 3 terms of the sequence: ๐๐ = 2๐๐โ1 + 1 when ๐1 = โ5. A. -9, -17, -33 B. -10, -20, -40 C. 3, 5, 7 D. -4, -3, -2 35. If the 7th term of an arithmetic sequence is 27 and the 16th term is 63, find the 23rd term. A. 223 B. 91 C. 4 D. 3 36. Which term of the sequence -290, -280, -270, -260, is 30? A. 31st term B. 33rd term C. 32nd term 1 D. 30th term 2 37. The common ratio in a geometric sequence is 3 and the fifth term is 27. Find the third term. A. 1 81 B. 6 C. 2 3 D. 2 19683 38. Find the 21st term in the expansion of (๐ฅ + ๐ฆ)32 . A. 225792840๐ฅ 12 ๐ฆ 20 B. 129024480๐ฅ11 ๐ฆ 21 C. 225792840๐ฅ 20 ๐ฆ12 D. 129024480๐ฅ 20 ๐ฆ12 lim ๐(๐ฅ) , if it exists. 39. For the function f whose graph is given, state the value of ๐ฅโ1 A. Does not exist B. 1 C. -1 D. 3 40. Evaluate the limit, if it exists: lim (๐ฅ 2 + ๐ฅ + 1) ๐ฅโโ2 A. 3 B. -5 lim ( 41. Evaluate the limit, if it exists: ๐ฅโ3 A. 1 C. Does not exist D. 5 C. Does not exist D. 0 ๐ฅ 2 โ 2๐ฅ โ 3 ) ๐ฅ 2 โ 10๐ฅ + 21 B. -1 42. Find an equation of the tangent line to ๐ฆ = ๐ฅ 2 โ 3๐ฅ + 5 at (2, 3). A. y = x โ 1 B. y = -x + 5 C. y = -x + 3 D. y = x + 1 43. Find the derivative of the function ๐(๐ฅ) = 5๐ฅ 7 โ 3๐ฅ 4 โ 2๐ฅ + 6. A. 12๐ฅ 6 + ๐ฅ 3 โ 1 B. 35๐ฅ 6 โ 12๐ฅ 3 โ 2 C. 35๐ฅ 6 โ 12๐ฅ 3 โ 2๐ฅ + 1 D. 23๐ฅ โ 2 Answers 1. B 2. A 3. B 4. D 5. A 6. D 7. A 8. C 9. C 10. A 11. A 12. B 13. C 14. A 15. D 16. B 17. B 18. A 19. A 20. C 21. D 22. C 23. A 24. B 25. A 26. C 27. A 28. D 29. B 30. D 31. C 32. A 33. C 34. A 35. B 36. B 37. C 38. A 39. A 40. A 41. B 42. D 43. B
© Copyright 2025 Paperzz