Practice Final Exam 2014

Practice Final Exam 2014
Name:________________________________
Hour:______
Pre-Calculus
1. Simplify: csc ๐œƒ cos ๐œƒ tan ๐œƒ sec ๐œƒ
A. cos ๐œƒ
B. sec ๐œƒ
C. 1
D. csc ๐œƒ
C. csc ๐œƒ
D. sin2 ๐œƒ
C. csc ๐œƒ
D. 1
2. Simplify: csc ๐œƒ โˆ’ cot ๐œƒ cos ๐œƒ
A. sin ๐œƒ
B. cot ๐œƒ
3. Simplify: (1 โˆ’ sin2 ๐œƒ)(1 + cot 2 ๐œƒ)
A. cos 2 ๐œƒ
B. cot 2 ๐œƒ
4. Use a sum/difference formula to find the exact value of sin 105º.
A.
โˆš2โˆ’โˆš6
4
B.
โˆš6+โˆš2
2
C.
โˆš6โˆ’โˆš2
4
5. Use a double-angle formula to find sin 2x if cos ๐‘ฅ =
A. โˆ’
โˆš3
2
B.
โˆš3
2
โˆš3
2
24
7
B.
and
1
C. โˆ’ 2
6. Use a double-angle formula to find tan 2x if sec ๐‘ฅ = โˆ’
A. โˆ’
D.
336
527
C.
24
7
3๐œ‹
2
โˆš6+โˆš2
4
< ๐‘ฅ < 2๐œ‹.
D. โˆš3
25
7
and 180º < x < 270º.
D. โˆ’
336
527
D.
7๐œ‹
4
โˆš2
7. Find cosโˆ’1 ( 2 ).
A.
๐œ‹
4
B. โˆ’
๐œ‹
4
C.
3๐œ‹
4
7
8. Evaluate sec (tanโˆ’1 24).
A.
25
7
B.
24
25
C.
25
24
D.
24
7
D.
3๐œ‹
4
D.
๐œ‹
6
9. Solve: cot ๐œƒ = 1 for all x-values in the interval [0,2๐œ‹).
A.
๐œ‹
4
and
3๐œ‹
4
B.
3๐œ‹
4
and
7๐œ‹
4
C.
๐œ‹
4
and
5๐œ‹
4
and
5๐œ‹
4
10. Solve: sec ๐œƒ + 2 = 0 for all x-values in the interval [0,2๐œ‹).
A.
2๐œ‹
3
and
4๐œ‹
3
B.
๐œ‹
3
and
5๐œ‹
3
C.
5๐œ‹
6
and
7๐œ‹
6
and
11๐œ‹
6
11. Solve: 2 sin2 ๐‘ฅ + sin ๐‘ฅ = 0 for all x-values in the interval [0,2๐œ‹).
A. 0, ๐œ‹,
7๐œ‹ 11๐œ‹
, 6
6
B.
๐œ‹ 3๐œ‹ 7๐œ‹ 11๐œ‹
, , , 6
2 2 6
C. 0, ๐œ‹,
4๐œ‹ 5๐œ‹
,
3 3
D.
๐œ‹ 3๐œ‹ 4๐œ‹ 5๐œ‹
, , ,
2 2 3 3
12. Solve: cos 2๐‘ฅ = sin ๐‘ฅ for all x-values.
๐œ‹
3
2๐œ‹
3
+ 2๐‘˜๐œ‹
๐œ‹
5๐œ‹
6
+ 2๐‘˜๐œ‹
๐œ‹
5๐œ‹
6
+ 2๐‘˜๐œ‹
2๐œ‹
3
+ 2๐‘˜๐œ‹
A. ๐œ‹ + 2๐‘˜๐œ‹, + 2๐‘˜๐œ‹,
B.
3๐œ‹
2
+ 2๐‘˜๐œ‹, 6 + 2๐‘˜๐œ‹,
C. ๐œ‹ + 2๐‘˜๐œ‹, 6 + 2๐‘˜๐œ‹,
D.
3๐œ‹
2
๐œ‹
3
+ 2๐‘˜๐œ‹, + 2๐‘˜๐œ‹,
13. Which graph represents the polar coordinate (โˆ’3,
A.
B.
2๐œ‹
)?
3
C.
D.
14. Convert the rectangular coordinate (5, 7) to a polar coordinate.
A. (โˆš74, 54.50 )
B. (โˆš74, 35.50 )
C. (โˆš24, 54.50 )
D. (โˆš24, 35.50 )
15. Convert the polar coordinate (-3, 240º) to a rectangular coordinate.
A. (โˆ’
3โˆš3
3
, โˆ’ 2)
2
3
B. (โˆ’ 2 , โˆ’
3โˆš3
)
2
3โˆš3 3
, )
2 2
3 3โˆš3
)
2
C. (
D. (2 ,
๐œ‹
16. Convert the polar coordinate (2, 2 ) to a rectangular coordinate.
A. (0, -2)
B. (0, 2)
C. (2, 0)
D. (-2, 0)
17. Find another polar representation of the point (โˆ’2, ๐œ‹) where r > 0.
A. (2, 3๐œ‹)
B. (2, 2๐œ‹)
18. Express 4 (cos
5๐œ‹
3
+ ๐‘– sin
A. 2 โˆ’ 2๐‘–โˆš3
5๐œ‹
)
3
C. (โˆ’2, ๐œ‹ )
D. (โˆ’2, 2๐œ‹)
in rectangular form.
B. 2โˆš3 โˆ’ 2๐‘–
C. โˆ’2 + 2๐‘–โˆš3
D. โˆ’2 โˆ’ 2๐‘–โˆš3
19. Express โˆ’โˆš3 + ๐‘– in polar form.
A. 2 (cos
5๐œ‹
6
+ ๐‘– sin
5๐œ‹
)
6
B. 2 (cos
2๐œ‹
3
+ ๐‘– sin
2๐œ‹
)
3
C. 2 (cos
11๐œ‹
6
+ ๐‘– sin
11๐œ‹
)
6
๐œ‹
๐œ‹
D. 2 (cos 6 + ๐‘– sin 6 )
5
20. Use DeMoivreโ€™s Theorem to find (1 โˆ’ โˆš3๐‘–) in polar form.
A. 32 (cos
55๐œ‹
6
+ ๐‘– sin
55๐œ‹
)
6
B. 32 (cos
5๐œ‹
3
+ ๐‘– sin
5๐œ‹
)
3
C. 32 (cos
25๐œ‹
3
+ ๐‘– sin
25๐œ‹
)
3
D. 2 (cos
21. Find the vector in component form having magnitude |๐ฏ| = 4 and direction ๐œƒ=150º.
A. โŒฉ2, โˆ’2โˆš3โŒช
B. โŒฉโˆ’2, 2โˆš3โŒช
C. โŒฉ2โˆš3, โˆ’2โŒช
D. โŒฉโˆ’2โˆš3, 2โŒช
5๐œ‹
3
+ ๐‘– sin
5๐œ‹
)
3
22. Find the direction of the vector ๐ฏ = โˆ’3๐ข + 3โˆš3๐ฃ.
A. 300º
B. 60º
C. 120º
D. 240º
C. -30
D. 30
23. Find ๐ฎ โˆ™ ๐ฏ if ๐ฎ = โŒฉ2, 6โŒช and ๐ฏ = โŒฉโˆ’3, 4โŒช.
A. 18
B. 8
24. Find the angle between u and v if ๐ฎ = โŒฉ4, 7โŒช and ๐ฏ = โŒฉโˆ’3, 5โŒช.
A. -89º
B. 61º
C. 179º
D. 29º
25. Find the work done by the force F = 50i โ€“ 40j in moving an object from (-1, 5) to (60, 3).
A. 3130 ft/lb
B. 2630 ft/lb
26. Which is a vertex of the ellipse
A. (-1, 3)
(๐‘ฅ+1)2
25
C. 2970 ft/lb
+
(๐‘ฆ+2)2
4
D. 3030 ft/lb
= 1?
B. (-1, -2)
C. (4, -2)
D. (5, 2)
27. The endpoints of the major axis of an ellipse are (6, 3) and (-2, 3) and the endpoints of the minor
axis are (2, 0) and (2, 6). Find the equation of the ellipse.
A.
(๐‘ฅโˆ’2)2
16
+
(๐‘ฆโˆ’3)2
9
=1
B.
(๐‘ฅโˆ’2)2
9
+
(๐‘ฆโˆ’3)2
16
C.
=1
(๐‘ฅโˆ’3)2
16
+
(๐‘ฆโˆ’1)2
9
28. Identify the equation of the asymptotes for the graph of the hyperbola
9
A. ๐‘ฆ = ± 16 ๐‘ฅ
4
B. ๐‘ฆ = ± 3 ๐‘ฅ
29. Find the foci of the hyperbola
A. (โˆ’2 ± โˆš13, 1)
(๐‘ฆโˆ’1)2
4
C. ๐‘ฆ = ±
โˆ’
(๐‘ฅ+2)2
B. (โˆ’2, 1 ± โˆš13)
9
16
๐‘ฅ
9
D.
=1
๐‘ฅ2
16
โˆ’
๐‘ฆ2
9
(๐‘ฅโˆ’2)2
64
B. up
(๐‘ฆโˆ’3)2
36
= 1.
3
D. ๐‘ฆ = ± 4 ๐‘ฅ
= 1.
C. (0, ±โˆš13)
D. (โˆ’2, 1 ± โˆš5)
30. In which direction does the parabola ๐‘ฆ 2 = โˆ’5๐‘ฅ open?
A. right
+
C. down
D. left
=1
31. Given that the vertex of a parabola is (4, -2) and the focus is (4, 3), find the equation of the
parabola.
A. ๐‘ฅ 2 = 20๐‘ฆ
B. (๐‘ฆ + 2)2 = 20(๐‘ฅ โˆ’ 4)
C. (๐‘ฅ โˆ’ 4)2 = 20(๐‘ฆ + 2)
D.(๐‘ฅ โˆ’ 4)2 = 5(๐‘ฆ + 2)
C. 1
D. 3
2
2
32. Find the sum of the sequence: โˆ‘(๐‘˜ โˆ’ 2)
๐‘˜=0
A. -1
B. 0
33. Find the nth term of the sequence: 53, 46, 39, 32, โ€ฆ
A. ๐‘Ž๐‘› = ๐‘› โˆ’ 7
B. ๐‘Ž๐‘› = โˆ’7๐‘› + 46
C. ๐‘Ž๐‘› = โˆ’7๐‘› + 60
D. ๐‘Ž๐‘› = 53(โˆ’7)๐‘›โˆ’1
34. Find the next 3 terms of the sequence: ๐‘Ž๐‘› = 2๐‘Ž๐‘›โˆ’1 + 1 when ๐‘Ž1 = โˆ’5.
A. -9, -17, -33
B. -10, -20, -40
C. 3, 5, 7
D. -4, -3, -2
35. If the 7th term of an arithmetic sequence is 27 and the 16th term is 63, find the 23rd term.
A. 223
B. 91
C. 4
D. 3
36. Which term of the sequence -290, -280, -270, -260, is 30?
A. 31st term
B. 33rd term
C. 32nd term
1
D. 30th term
2
37. The common ratio in a geometric sequence is 3 and the fifth term is 27. Find the third term.
A.
1
81
B. 6
C.
2
3
D.
2
19683
38. Find the 21st term in the expansion of (๐‘ฅ + ๐‘ฆ)32 .
A. 225792840๐‘ฅ 12 ๐‘ฆ 20
B. 129024480๐‘ฅ11 ๐‘ฆ 21
C. 225792840๐‘ฅ 20 ๐‘ฆ12
D. 129024480๐‘ฅ 20 ๐‘ฆ12
lim ๐‘“(๐‘ฅ) , if it exists.
39. For the function f whose graph is given, state the value of ๐‘ฅโ†’1
A. Does not exist
B. 1
C. -1
D. 3
40. Evaluate the limit, if it exists: lim (๐‘ฅ 2 + ๐‘ฅ + 1)
๐‘ฅโ†’โˆ’2
A. 3
B. -5
lim (
41. Evaluate the limit, if it exists: ๐‘ฅโ†’3
A. 1
C. Does not exist
D. 5
C. Does not exist
D. 0
๐‘ฅ 2 โˆ’ 2๐‘ฅ โˆ’ 3
)
๐‘ฅ 2 โˆ’ 10๐‘ฅ + 21
B. -1
42. Find an equation of the tangent line to ๐‘ฆ = ๐‘ฅ 2 โˆ’ 3๐‘ฅ + 5 at (2, 3).
A. y = x โ€“ 1
B. y = -x + 5
C. y = -x + 3
D. y = x + 1
43. Find the derivative of the function ๐‘“(๐‘ฅ) = 5๐‘ฅ 7 โˆ’ 3๐‘ฅ 4 โˆ’ 2๐‘ฅ + 6.
A. 12๐‘ฅ 6 + ๐‘ฅ 3 โˆ’ 1
B. 35๐‘ฅ 6 โˆ’ 12๐‘ฅ 3 โˆ’ 2
C. 35๐‘ฅ 6 โˆ’ 12๐‘ฅ 3 โˆ’ 2๐‘ฅ + 1
D. 23๐‘ฅ โˆ’ 2
Answers
1. B
2. A
3. B
4. D
5. A
6. D
7. A
8. C
9. C
10. A
11. A
12. B
13. C
14. A
15. D
16. B
17. B
18. A
19. A
20. C
21. D
22. C
23. A
24. B
25. A
26. C
27. A
28. D
29. B
30. D
31. C
32. A
33. C
34. A
35. B
36. B
37. C
38. A
39. A
40. A
41. B
42. D
43. B