《中国神经再生研究(英文版)》杂志 2015 年总目次:神经损伤修复保护与再生 神经损伤修复保护与再生:综述文章 ○ Matrix interactions modulate neurotrophin-mediated neurite ○ The p75 neurotrophin receptor: at the crossroad of neural repair and death outgrowth and pathfinding P75 神经营养因子受体:站在神经修复和死亡的十字路口 基质相互作用调节神经营养因子介导的轴突生长和路径 引用本文:Meeker RB, Williams KS. The p75 neurotrophin receptor: at 引用本文:Madl CM, Heilshorn SC. Matrix interactions modulate the crossroad of neural repair and death. Neural Regen Res. neurotrophin-mediated neurite outgrowth and pathfinding. Neural Regen 2015;10(5):721-725. Res. 2015;10(4):514-517. doi:10.4103/1673-5374.156967 doi:10.4103/1673-5374.155426 ○ Inhibition of kinesin-5 improves regeneration of injured axons by a novel microtubule-based mechanism 增强微管活性改善轴突再生:抑制驱动蛋白-5 的作用 引用本文:Baas PW, Matamoros AJ. Inhibition of kinesin-5 improves regeneration of injured axons by a novel microtubule-based mechanism. ○ Enhancing endogenous stem cells in the newborn via delayed umbilical cord clamping 延时断脐可增强新生儿内源性干细胞 引用本文:Lawton C, Acosta S, Watson N, Gonzales-Portillo C, Diamandis T, Tajiri N, Kaneko Y, Sanberg PR, Borlongan CV. Enhancing Neural Regen Res. 2015;10(6):845-849. endogenous stem cells in the newborn via delayed umbilical cord doi:10.4103/1673-5374.158351 clamping. Neural Regen Res. 2015;10(9):1359-1362. doi:10.4103/1673-5374.165218 ○ PTEN inhibition and axon regeneration and neural repair 抑制 PTEN 可促进轴突生长和神经修复 ○ Connexins in neurons and glia: targets for intervention in disease 引用本文:Ohtake Y, Hayat U, Li S. PTEN inhibition and axon regeneration and injury and neural repair. Neural Regen Res. 2015;10(9):1363-1368. 神经元和神经胶质细胞中的连接蛋白:损伤与疾病的干预靶标? doi:10.4103/1673-5374.165496 引用本文:Moore KB, O’Brien J. Connexins in neurons and glia: targets for intervention in disease and injury. Neural Regen Res. ○ Axon regeneration impediment: the role of paired 2015;10(7):1013-1017. immunoglobulin-like receptor B doi:10.4103/1673-5374.160092 神经轴突再生障碍:配对免疫球蛋白样受体 B 引用本文:Liu J, Wang Y, Fu W. Axon regeneration impediment: the role ○ Cell replacement therapy for central nervous system diseases of paired immunoglobulin-like receptor B. Neural Regen Res. 中枢神经系统的细胞替代策略? 2015;10(8):1338-1342. 引用本文:Tso D, McKinnon RD. Cell replacement therapy for central doi:10.4103/1673-5374.162771 ○ The role of the Rho/ROCK signaling pathway in inhibiting axonal regeneration in the central nervous system nervous system diseases. Neural Regen Res. 2015;10(9):1356-1358. doi:10.4103/1673-5374.165209 抑制中枢神经轴突再生的重要途径:Ras 同源基因-Rho 相关螺旋卷曲蛋 ○ Target morphology and cell memory: a model of regenerative pattern 白激酶信号通路 formation 引用本文:Liu J, Gao HY, Wang XF. The role of the Rho/ROCK signaling 针对细胞形态和记忆形成的一种再生模式模型 pathway in inhibiting axonal regeneration in the central nervous system. 引用本文:Bessonov N, Levin M, Morozova N, Reinberg N, Tosenberger Neural Regen Res. 2015;10(11):1892-1896. A, Volpert V. Target morphology and cell memory: a model of doi:10.4103/1673-5374.170325 regenerative pattern formation. Neural Regen Res. 2015;10(12):1901-1905. ○ Novel applications of trophic factors, Wnt and WISP for neuronal doi:10.4103/1673-5374.165216 repair and regeneration in metabolic disease 代谢性疾病神经元修复和再生中的营养因子,Wnt 信号和 Wnt1 诱导信号 传导途径蛋白 引用本文:Maiese K. Novel applications of trophic factors, Wnt and WISP for neuronal repair and regeneration in metabolic disease. Neural Regen Res. 2015;10(4):518-528. doi:10.4103/1673-5374.155427 神经损伤修复保护与再生:观点文章 ○ LOTUS, a potent blocker of Nogo receptor-1 causing inhibition of ○ Understanding axon guidance: attraction, repulsion, and statistical physics axonal growth 了解轴突导向:吸引和排斥与概率统计 对抗 Nogo 受体 1 抑制轴突生长的可能性 引用本文:Wadsworth WG. Understanding axon guidance: attraction, 引用本文:Kurihara Y, Takei K. LOTUS, a potent blocker of Nogo repulsion, and statistical physics. Neural Regen Res. receptor-1 causing inhibition of axonal growth. Neural Regen Res. 2015;10(2):176-179. 2015;10(1):46-48. doi:10.4103/1673-5374.152360 doi:10.4103/1673-5374.150652 1 《中国神经再生研究(英文版)》杂志 2015 年总目次:神经损伤修复保护与再生 ○ The necessary role of mTORC1 in central nervous system axon ○ What can Drosophila axonal development teach us about nerve regeneration regeneration? 哺乳动物中枢神经系统轴突再生必需的雷帕霉素靶蛋白 果蝇胚胎轴突导向可以给神经再生带来什么? 引用本文:Hu Y. The necessary role of mTORC1 in central nervous 引用本文:Araújo SJ. What can Drosophila axonal development system axon regeneration. Neural Regen Res. 2015;10(2):186-188. teach us about nerve regeneration? Neural Regen Res. doi:10.4103/1673-5374.152363 2015;10(12):1917-1918. ○ RAFting the rapids of axon regeneration signaling RAF 激酶可加快轴突再生信号的传导速度 引用本文:Zhong J. RAFting the rapids of axon regeneration signaling. Neural Regen Res. 2015;10(3):341-343. doi:10.4103/1673-5374.153670 doi:10.4103/1673-5374.169626 ○ Releasing Nrf2 to promote neurite outgrowth 核因子 E2 相关因子 2 释放可促进轴突生长 引用本文:Yang C, Cheng Y, Zhao J, Rong J. Releasing Nrf2 to promote neurite outgrowth. Neural Regen Res. 2015;10(12):1934-1935. ○ Synapsing with NG2 cells (polydendrocytes), unappreciated barrier doi:10.4103/1673-5374.169618 to axon regeneration? 少突胶质细胞 NG2 突触:抑制轴突再生的障碍? ○ Hope on the (fruit) fly: the Drosophila wing paradigm of axon injury 引用本文:Son YJ. Synapsing with NG2 cells (polydendrocytes), 果蝇翼轴索损伤模型:可进行轴突退化变性直观的活体监测和研究 unappreciated barrier to axon regeneration? Neural Regen Res. 引用本文:Fang Y, Bonini NM. Hope on the (fruit) fly: the Drosophila 2015;10(3):346-348. wing paradigm of axon injury. Neural Regen Res. doi:10.4103/1673-5374.153672 2015;10(2):173-175. doi:10.4103/1673-5374.152359 ○ Protein deacetylases and axonal regeneration 蛋白去乙酰化酶与轴突再生 ○ Impaired eIF2B activity in oligodendrocytes contributes to VWMD 引用本文:Ng F, Tang BL. Protein deacetylases and axonal regeneration. pathogenesis Neural Regen Res. 2015;10(6):870-871. 少突胶质细胞中 eIF2B 活性下降:抑制髓鞘形成 doi:10.4103/1673-5374.158333 引用本文:Lin W. Impaired eIF2B activity in oligodendrocytes contributes to VWMD pathogenesis. Neural Regen Res. ○ Mercury-induced neurotoxicity and neuroprotective effects of berberine 黄连素对水银-神经毒性的神经保护作用 引用本文:Abdel Moneim AE. Mercury-induced neurotoxicity and neuroprotective effects of berberine. Neural Regen Res. 2015;10(6):881-882. doi:10.4103/1673-5374.158336 2015;10(2):195-197. doi:10.4103/1673-5374.152366 ○ The choline pathway as a strategy to promote central nervous system (CNS) remyelination 胆碱通路:如何促进中枢神经系统髓鞘的再生? 引用本文:Skripuletz T, Linker RA, Stangel M. The choline pathway as a ○ Subcellular localization of Rho GTPases: implications for axon strategy to promote central nervous system (CNS) remyelination. Neural regeneration Regen Res. 2015;10(9):1369-1370. Rho 家族鸟苷三磷酸酶亚细胞定位对轴突再生的影响 doi:10.4103/1673-5374.165498 引用本文:Hynds DL. Subcellular localization of Rho GTPases: implications for axon regeneration. Neural Regen Res. ○ To myelinate or not to myelinate: fine tuning cAMP signaling in 2015;10(7):1032-1033. Schwann cells to balance cell proliferation and differentiation doi:10.4103/1673-5374.160064 环磷酸腺苷信号抑或是雪旺细胞髓鞘化的开关? 引用本文:Monje PV. To myelinate or not to myelinate: fine tuning cAMP ○ Acetylation as a mechanism that regulates axonal regeneration signaling in Schwann cells to balance cell proliferation and differentiation. 乙酰化调节轴突再生的机制 Neural Regen Res. 2015;10(12):1936-1937. 引用本文:Lin S, Smith GM. Acetylation as a mechanism that regulates doi:10.4103/1673-5374.169622 axonal regeneration. Neural Regen Res. 2015;10(7):1034-1036. doi:10.4103/1673-5374.160066 ○ Magnetic nanotechnology to study and promote axon growth 磁纳米技术可促进轴突生长 引用本文:Pita-Thomas W. Magnetic nanotechnology to study and promote axon growth. Neural Regen Res. 2015;10(7):1037-1039. doi:10.4103/1673-5374.160067 ○ Old dogs with new tricks: intra-axonal translation of nuclear proteins ○ TAM receptors: two pathways to regulate adult neurogenesis 蛋白酪氨酸激酶亚族 TAM 受体调节神经新生的两种途径 引用本文:Johnson K, Ji R. TAM receptors: two pathways to regulate adult neurogenesis. Neural Regen Res. 2015;10(3):344-345. doi:10.4103/1673-5374.153671 ○ Receptor-mediated increase in rabies virus axonal transport 神经轴突运输中受体介导狂犬病病毒 核内蛋白的轴突内位移:支持神经突生长与再生 引用本文:Gluska S, Finke S, Perlson E. Receptor-mediated 引用本文:Twiss JL, Merianda TT. Old dogs with new tricks: intra-axonal increase in rabies virus axonal transport. Neural Regen Res. translation of nuclear proteins. Neural Regen Res. 2015;10(6):883-884. 2015;10(10):1560-1562. doi:10.4103/1673-5374.158337 doi:10.4103/1673-5374.165264 2 《中国神经再生研究(英文版)》杂志 2015 年总目次:神经损伤修复保护与再生 ○ The roles of tubulin-folding cofactors in neuronal morphogenesis and ○ Studying neurological disorders using induced pluripotent stem cells disease and optogenetics 微管蛋白折叠辅助因子在神经元形态发生和疾病中的作用 诱导多能干细胞和光遗传学技术可用于神经疾病的修复与再生 引用本文:Okumura M, Miura M, Chihara T. The roles of tubulin-folding 引用本文:Chin EW, Goh EL. Studying neurological disorders using cofactors in neuronal morphogenesis and disease. Neural Regen Res. induced pluripotent stem cells and optogenetics. Neural Regen Res. 2015;10(9):1388-1389. doi:10.4103/1673-5374.165226 ○ VEGF in the nervous system: an important target for research in neurodevelopmental and regenerative medicine 血管内皮生长因子:研究神经再生的重要靶点 引用本文:Dumpich M, Theiss C. VEGF in the nervous system: an 2015;10(11):1720-1722. doi:10.4103/1673-5374.169607 ○ Deriving striatal projection neurons from human pluripotent stem cells with Activin A 多能干细胞至纹状体投射神经元:还差“激活素 A”的距离 important target for research in neurodevelopmental and regenerative 引用本文:Noakes Z, Fjodorova M, Li M. Deriving striatal projection medicine. Neural Regen Res. 2015;10(11):1725-1726. neurons from human pluripotent stem cells with Activin A. Neural Regen doi:10.4103/1673-5374.170287 Res. 2015;10(12):1914-1916. doi:10.4103/1673-5374.169621 ○ Neural stem cell replacement: a possible therapy for neurodevelopmental disorders? ○ Physiological significance of Rag1 in retinal ganglion cell death 神经干细胞替代:治愈神经发育障碍? Rag1 在神经元死亡信号传导途径中的生理学意义 引用本文:Telias M, Ben-Yosef D. Neural stem cell replacement: a 引用本文:Hayashi T, Murata T. Physiological significance of Rag1 possible therapy for neurodevelopmental disorders? Neural Regen Res. in retinal ganglion cell death. Neural Regen Res. 2015;10(2):180-182. 2015;10(2):192-194. doi:10.4103/1673-5374.152361 doi:10.4103/1673-5374.152365 ○ Perspectives on disrupted-in-schizophrenia 1 signaling in neurogenesis 选择性 DISC1 会破坏成年海马神经元中神经干细胞到靶标的桥梁连接 引用本文:Chandran JS. Perspectives on disrupted-in-schizophrenia 1 signaling in neurogenesis. Neural Regen Res. 2015;10(4):555-556. doi:10.4103/1673-5374.155419 ○ Novel advancements in three-dimensional neural tissue engineering and regenerative medicine 三维神经组织工程构建培养神经元及脑结构的新策略 引用本文:McMurtrey RJ. Novel advancements in three-dimensional neural tissue engineering and regenerative medicine. Neural Regen Res. 2015;10(3):352-354. ○ Fine-tuning of cortical progenitor proliferation by thalamic afferents doi:10.4103/1673-5374.153674 大脑皮质祖细胞增殖对丘脑传入的影响 引用本文:Gerstmann K, Zimmer G. Fine-tuning of cortical progenitor ○ Pleiotrophin fights Brd2 for neuronal differentiation proliferation by thalamic afferents. Neural Regen Res. 多效蛋白拮抗 BRD2 在神经元分化中的作用 2015;10(6):887-888. 引用本文:Garcia-Gutierrez P, Garcia-Dominguez M. Pleiotrophin fights doi:10.4103/1673-5374.158341 Brd2 for neuronal differentiation. Neural Regen Res. 2015;10(4):544-546. ○ The vascular stem cell niche: roadmap for transplanted neural doi:10.4103/1673-5374.155416 progenitor cells during environmental enrichment? 血管干细胞环境:是神经祖细胞移植的路线图么? 引用本文:Waldau B. The vascular stem cell niche: roadmap for transplanted neural progenitor cells during environmental enrichment? Neural Regen Res. 2015;10(8):1204-1205. doi:10.4103/1673-5374.162692 ○ Progesterone: a universal stimulus for neuronal cells? 黄体酮:刺激神经元新生的万能钥匙? 引用本文:Theis V, Theiss C. Progesterone: a universal stimulus for neuronal cells? Neural Regen Res. 2015;10(4):547-549. doi:10.4103/1673-5374.155417 ○ Ubiquitin homeostasis: from neural stem cell differentiation to neuronal development ○ Active zone stability: insights from fly neuromuscular junction 泛素平衡:从神经干细胞分化到神经元发育 突触活动区稳定性:从果蝇神经-肌接头所见 引用本文:Ryu HW, Ryu KY. Ubiquitin homeostasis: from neural stem 引用本文:Tian X, Wu C. Active zone stability: insights from fly cell differentiation to neuronal development. Neural Regen Res. neuromuscular junction. Neural Regen Res. 2015;10(5):677-678. 2015;10(8):1209-1210. doi:10.4103/1673-5374.156942 doi:10.4103/1673-5374.162693 ○ Dendrimer nanocarriers drug action: perspective for neuronal ○ Glypican 4 down-regulation in pluripotent stem cells as a potential pharmacology strategy to improve differentiation and to impair tumorigenicity of cell 树枝状纳米载体:神经元药理学新视角 transplants 引用本文:Vidal F, Guzman L. Dendrimer nanocarriers drug action: 磷脂酰肌醇蛋白聚糖-4 可提高干细胞治疗的安全性? 引用本文:Dono R. Glypican 4 down-regulation in pluripotent stem cells as a potential strategy to improve differentiation and to impair tumorigenicity of cell transplants. Neural Regen Res. 2015;10(10):1576-1577. perspective for neuronal pharmacology. Neural Regen Res. 2015;10(7):1029-1031. doi:10.4103/1673-5374.160063 doi:10.4103/1673-5374.165274 3 《中国神经再生研究(英文版)》杂志 2015 年总目次:神经损伤修复保护与再生 ○ Localized regulation of the axon shaft during the emergence of ○ Shine bright: considerations on the use of fluorescent substrates in collateral branches living monoaminergic neurons in vitro 侧枝萌发时神经树突干的局限性调节 耀眼的光芒:对使用荧光底物体外检测存活神经元单胺的几点思考 引用本文:Gallo G. Localized regulation of the axon shaft during the 引用本文:Schloss P, Matthäus F, Lau T. Shine bright: considerations on emergence of collateral branches. Neural Regen Res. the use of fluorescent substrates in living monoaminergic neurons in 2015;10(8):1206-1208. vitro. Neural Regen Res. 2015;10(9):1383-1385. doi:10.4103/1673-5374.162694 doi:10.4103/1673-5374.165223 ○ Superparamagnetic iron oxide nanoparticles: promote neuronal ○ The emerging roles of transplanted radial glial cells in regenerating regenerative capacity? the central nervous system 纳米粒子促进神经元再生的潜力? 放射状胶质细胞移植在中枢神经系统再生中的新作用 引用本文:Neubert J, Bräuer AU. Superparamagnetic iron oxide 引用本文:White RE, Barry DS. The emerging roles of transplanted nanoparticles: promote neuronal regenerative capacity? Neural Regen radial glial cells in regenerating the central nervous system. Neural Res. 2015;10(10):1568-1569. Regen Res. 2015;10(10):1548-1551. doi:10.4103/1673-5374.165306 doi:10.4103/1673-5374.165317 ○ Restoring nervous system structure and function using tissue ○ Schwann cell Miz without POZ: degeneration meets regeneration engineered living scaffolds 控制细胞返变与再生:基因表达“开关”? 组织工程持久支架如何恢复神经系统结构和功能? 引用本文:Fuhrmann D, Elsässer HP. Schwann cell Miz without POZ: 引用本文:Struzyna LA, Harris JP, Katiyar KS, Chen HI, Cullen DK. degeneration meets regeneration. Neural Regen Res. Restoring nervous system structure and function using tissue 2015;10(10):1563-1564. engineered living scaffolds. Neural Regen Res. doi:10.4103/1673-5374.165263 2015;10(5):679-685. doi:10.4103/1673-5374.156943 ○ Efficacy of glucagon-like peptide-1 mimetics for neural regeneration 胰高血糖素样肽-1 类似物在神经再生中的作用? ○ Lesson from the neuromuscular junction: role of pattern and timing of 引用本文:Sango K, Utsunomiya K. Efficacy of glucagon-like peptide-1 nerve activity in synaptic development mimetics for neural regeneration. Neural Regen Res. 从神经肌肉接头处所得:发育中的神经活动模式与作用 2015;10(11):1723-1724. 引用本文:Favero M, Cangiano A, Busetto G. Lesson from the doi:10.4103/1673-5374.169611 neuromuscular junction: role of pattern and timing of nerve activity in synaptic development. Neural Regen Res. 2015;10(5):686-688. ○ Regenerative potential of targeting glycogen synthase kinase-3 doi:10.4103/1673-5374.156944 signaling in neural tissues 促进神经再生的重要工具:操控糖原合酶激酶 3 活性 ○ Synthetic and nature-derived lipid nanoparticles for neural 引用本文:Jung EM, Moffat JJ, Kim WY. Regenerative potential of regeneration targeting glycogen synthase kinase-3 signaling in neural tissues. Neural 合成和自然衍生脂质纳米粒在神经再生中的应用 Regen Res. 2015;10(12):1912-1913. 引用本文:Takeda YS, Xu Q. Synthetic and nature-derived lipid doi:10.4103/1673-5374.169627 nanoparticles for neural regeneration. Neural Regen Res. 2015;10(5):689-690. ○ Purinergic signalling in neuroregeneration doi:10.4103/1673-5374.156946 神经再生中的嘌呤能信号 引用本文:Burnstock G. Purinergic signalling in neuroregeneration. ○ Matrilin-2, an extracellular adaptor protein, is needed for the Neural Regen Res. 2015;10(12):1919. regeneration of muscle, nerve and other tissues doi:10.4103/1673-5374.165300 胞外基质蛋白-2:用于神经、肌肉和其它组织再生的一种胞外接头蛋白 引用本文:Korpos É, Deák F, Kiss I. Matrilin-2, an extracellular adaptor ○ A useful electroencephalography (EEG) marker of brain plasticity: delta waves protein, is needed for the regeneration of muscle, nerve and other δ波:一个可用于标记大脑可塑性的脑电图波型 tissues. Neural Regen Res. 2015;10(6):866-869. 引用本文:Assenza G, Di Lazzaro V. A useful electroencephalography doi:10.4103/1673-5374.158332 (EEG) marker of brain plasticity: delta waves. Neural Regen Res. 2015;10(8):1216-1217. ○ Role of mitochondria in regulating microRNA activity and its doi:10.4103/1673-5374.162698 relevance to the central nervous system 线粒体在中枢神经系统 MicroRNA 活性调节中的作用 ○ Application of iron oxide anoparticles in neuronal tissue engineering 引用本文:Wang WX, Springer JE. Role of mitochondria in regulating 氧化铁纳米颗粒在神经组织工程中的应用 microRNA activity and its relevance to the central nervous system. 引用本文:Ziv-Polat O, Margel S, Shahar A. Application of iron oxide Neural Regen Res. 2015;10(7):1026-1028. anoparticles in neuronal tissue engineering. Neural Regen Res. doi:10.4103/1673-5374.160061 2015;10(2):189-191. doi:10.4103/1673-5374.152364 4 《中国神经再生研究(英文版)》杂志 2015 年总目次:神经损伤修复保护与再生 ○ Phage display: development of nanocarriers for targeted drug ○ Exosomes in neurological disease, neuroprotection, repair and delivery to the brain therapeutics: problems and perspectives 噬菌体靶向药物递送纳米载体可突破血脑屏障的限制 外泌体:为神经保护和修复带来了新希望? 引用本文:Bakhshinejad B, Karimi M, Khalaj-Kondori M. Phage display: 引用本文:Kalani A, Tyagi N. Exosomes in neurological disease, development of nanocarriers for targeted drug delivery to the brain. neuroprotection, repair and therapeutics: problems and perspectives. Neural Regen Res. 2015;10(6):862-865. Neural Regen Res. 2015;10(10):1565-1567. doi:10.4103/1673-5374.158330 doi:10.4103/1673-5374.165305 ○ Neuroprotective properties of kavalactones ○ Intracellular sorting pathways of the amyloid precursor protein 提纯的麻醉椒内酯具有神经保护特性 provide novel neuroprotective strategies 引用本文:Tzeng YM, Lee MJ. Neuroprotective properties of 细胞内 APP 分拣途径能否成为神经保护策略的思路? kavalactones. Neural Regen Res. 2015;10(6):875-877. 引用本文:Hermey G. Intracellular sorting pathways of the amyloid doi:10.4103/1673-5374.158335 precursor protein provide novel neuroprotective strategies. Neural Regen Res. 2015;10(11):1727-1728. ○ Translocator protein 18 kDa (TSPO): old dogma, new mice, new doi:10.4103/1673-5374.170288 structure, and new questions for neuroprotection 转运蛋白 18 kDa(TSPO) :旧教条,新大鼠,新结构和新问题 ○ Self-healing hydrogel for tissue repair in the central nervous system 引用本文:Kim EJ, Yu SW. Translocator protein 18 kDa (TSPO): old 自愈性水凝胶可以修复损伤中枢神经 dogma, new mice, new structure, and new questions for neuroprotection. 引用本文:Hsieh FY, Tseng TC, Hsu SH. Self-healing hydrogel for tissue Neural Regen Res. 2015;10(6):878-880. repair in the central nervous system. Neural Regen Res. doi:10.4103/1673-5374.158338 2015;10(12):1922-1923. doi:10.4103/1673-5374.169624 ○ Blood-brain barrier modeling: challenges and perspectives 血脑屏障建模:神经保护的挑战与展望 ○ Pharmacological inhibition of cation-chloride cotransporters for 引用本文:Ruck T, Bittner S, Meuth SG. Blood-brain barrier modeling: neurological diseases challenges and perspectives. Neural Regen Res. 2015;10(6):889-891. 阳离子氯离子转运蛋白对神经系统疾病的药理学干预抑制与保护 doi:10.4103/1673-5374.158342 引用本文:Nepomuceno R, Sun D. Pharmacological inhibition of cation-chloride cotransporters for neurological diseases. Neural Regen ○ To measure is to know: how advances in image analysis are Res. 2015;10(12):1924-1925. supporting neural repair strategies doi:10.4103/1673-5374.172313 图像分析为何在支持优化神经修复策略中具有优势 引用本文:Vallotton P, Kapsa RMI. “To measure is to know”: how ○ All roads go to Salubrinal: endoplasmic reticulum stress, advances in image analysis are supporting neural repair strategies. neuroprotection and glial scar formation Neural Regen Res. 2015;10(7):1040-1042. 条条大路通 Salubrinal:内质网应激、神经保护与胶质瘢痕形成 doi:10.4103/1673-5374.160069 引用本文:Romero-Ramírez L, Nieto-Sampedro M, Barreda-Manso MA. All roads go to Salubrinal: endoplasmic reticulum stress, ○ The neuroprotective potential of endoplasmic reticulum chaperones neuroprotection and glial scar formation. Neural Regen Res. 内质网分子伴侣的神经保护潜能 2015;10(12):1926-1927. 引用本文:McLaughlin T, Zhang SX. The neuroprotective potential of doi:10.4103/1673-5374.169619 endoplasmic reticulum chaperones. Neural Regen Res. 2015;10(8):1211-1213. ○ The inositol metabolism pathway as a target for neuroprotective doi:10.4103/1673-5374.162696 strategies 肌醇代谢途径可能是神经保护策略的靶标? ○ Non-steroidal anti-inflammatory drugs (NSAIDs) and neuroprotection 引用本文:Nystuen AM, Yang AW. The inositol metabolism pathway as a in the elderly: a view from the mitochondria target for neuroprotective strategies. Neural Regen Res. 老龄人群中的非类固醇抗炎药和神经保护:从线粒体所得 2015;10(12):1928-1929. 引用本文:Calvo-Rodríguez M, Núñez L, Villalobos C. Non-steroidal doi:10.4103/1673-5374.169631 anti-inflammatory drugs (NSAIDs) and neuroprotection in the elderly: a view from the mitochondria. Neural Regen Res. 2015;10(9):1371-1372. ○ Interferon beta (IFN-β) treatment exerts potential neuroprotective doi:10.4103/1673-5374.165219 effects through neurotrophic factors and novel neurotensin/neurotensin high affinity receptor 1 pathway ○ Neuroprotection and recovery from early-life adversity: β-干扰素通过脑源性神经营养因子通路发挥潜在的神经保护作用 considerations for environmental enrichment 引用本文:Wang Q, Mao-Draayer Y. Interferon beta (IFN-β) treatment 环境富集和神经保护和恢复效应? exerts potential neuroprotective effects through neurotrophic factors and 引用本文:Kentner AC. Neuroprotection and recovery from early-life novel neurotensin/neurotensin high affinity receptor 1 pathway. Neural adversity: considerations for environmental enrichment. Neural Regen Regen Res. 2015;10(12):1932-1933. Res. 2015;10(10):1545-1547. doi:10.4103/1673-5374.169636 doi:10.4103/1673-5374.165315 5 《中国神经再生研究(英文版)》杂志 2015 年总目次:神经损伤修复保护与再生 神经损伤修复保护与再生:研究原著文章 ○ Co-culture of oligodendrocytes and neurons can be used to assess ○ Optimal concentration and time window for proliferation and drugs for axon regeneration in the central nervous system differentiation of neural stem cells from embryonic cerebral cortex: 5% 少突胶质细胞和神经元共培养方法可用于中枢神经系统轴突再生药物评价 oxygen preconditioning for 72 hours 引用本文:Gang L, Yao YC, Liu YF, Li YP, Yang K, Lu L, Cheng YC, 5%O2 预处理 72 h 为促进大脑皮质神经干细胞增殖及分化的最佳浓度和时间窗 Chen XY, Tu Y. Co-culture of oligodendrocytes and neurons can be used 引用本文:Yuan LL, Guan YJ, Ma DD, Du HM. Optimal concentration to assess drugs for axon regeneration in the central nervous system. Neural Regen Res. 2015;10(10):1612-1616. doi:10.4103/1673-5374.167759 ○ Efficacy and safety of nerve growth factor for the treatment of neurological diseases: a meta-analysis of 64 randomized controlled trials involving 6,297 patients and time window for proliferation and differentiation of neural stem cells from embryonic cerebral cortex: 5% oxygen preconditioning for 72 hours. Neural Regen Res. 2015;10(9):1516-1522. doi:10.4103/1673-5374.165526 ○ Mononuclear cells from the cord blood and granulocyte-colony 神经生长因子治疗神经系统疾病安全有效:64 项涉及 6297 例患者随机对 stimulating factor-mobilized peripheral blood: is there a potential for 照试验的 META 分析 treatment of cerebral palsy 引用本文:Zhao M, Li XY, Xu CY, Zou LP. Efficacy and safety of nerve 脐血与外周血 G-CSF 动员的单个核细胞移植有潜力治疗脑性瘫痪? growth factor for the treatment of neurological diseases: a meta-analysis 引用本文:Koh H, Hwang K, Lim HY, Kim YJ, Lee YH. Mononuclear cells of 64 randomized controlled trials involving 6,297 patients. Neural from the cord blood and granulocyte-colony stimulating factor-mobilized Regen Res. 2015;10(5):819-828. peripheral blood: is there a potential for treatment of cerebral palsy. doi:10.4103/1673-5374.156989 Neural Regen Res. 2015;10(12):2018-2024. doi:10.4103/1673-5374.172321 ○ The HMGB1 signaling pathway activates the inflammatory response in Schwann cells ○ Curcumin pretreatment and post-treatment both improve the 激活许旺细胞炎症反应:高迁移率族蛋白 1 及其受体信号通路 antioxidative ability of neurons with oxygen-glucose deprivation 引用本文:Man LL, Liu F, Wang YJ, Song HH, Xu HB, Zhu ZW, Zhang Q, 姜黄素预处理或后处理均可提高氧糖剥夺神经元的抗氧化能力 Wang YJ. The HMGB1 signaling pathway activates the inflammatory response in Schwann cells. Neural Regen Res. 2015;10(10):1706-1712. doi:10.4103/1673-5374.167773 ○ MicroRNA-9 promotes the neuronal differentiation of rat bone marrow mesenchymal stem cells by activating autophagy 引用本文:Wu JX, Zhang LY, Chen YL, Yu SS, Zhao Y, Zhao J. Curcumin pretreatment and post-treatment both improve the antioxidative ability of neurons with oxygen-glucose deprivation. Neural Regen Res. 2015;10(3):481-489. doi:10.4103/1673-5374.153700 MicroRNA-9 激活自噬活性:促进大鼠骨髓间充质干细胞向神经元样细胞 样细胞分化 ○ Curcumin improves synaptic plasticity impairment induced by 引用本文:Zhang GY, Wang J, Jia YJ, Han R, Li P, Zhu DN. MicroRNA-9 HIV-1gp120 V3 loop promotes the neuronal differentiation of rat bone marrow mesenchymal 姜黄素可改善 HIV-1gp120V3 环致神经元突触可塑性损伤 stem cells by activating autophagy. Neural Regen Res. 引用本文:Shen LL, Jiang ML, Liu SS, Cai MC, Hong ZQ, Lin LQ, Xing 2015;10(2):314-320. YY, Chen GL, Pan R, Yang LJ, Xu Y, Dong J. Curcumin improves doi:10.4103/1673-5374.143439 synaptic plasticity impairment induced by HIV-1gp120 V3 loop. Neural Regen Res. 2015;10(6):925-931. ○ Differentiation of Wharton’s jelly mesenchymal stem cells into doi:10.4103/1673-5374.158358 neurons in alginate scaffold 脐带间充质干细胞在海藻酸盐支架中分化为运动神经元样细胞 引用本文:Hosseini SM, Vasaghi A, Nakhlparvar N, Roshanravan R, Talaei-khozani T, Razi Z. Differentiation of Wharton’s jelly mesenchymal stem cells into neurons in alginate scaffold. Neural Regen Res. 2015;10(8):1312-1316. doi:10.4103/1673-5374.162768 ○ Nerve biopsy findings contribute to diagnosis of multiple mononeuropathy: 78% of findings support clinical diagnosis 神经活检病理诊断多发性单神经病:78%支持临床诊断 引用本文:Zhang YS, Sun AP, Chen L, Dong RF, Zhong YF, Zhang J. Nerve biopsy findings contribute to diagnosis of multiple mononeuropathy: 78% of findings support clinical diagnosis. Neural ○ Elastic modulus affects the growth and differentiation of neural stem cells Regen Res. 2015;10(1):112-118. 弹性模量影响神经干细胞的生长及分化方向 doi:10.4103/1673-5374.150716 引用本文:Jiang XF, Yang K, Yang XQ, Liu YF, Cheng YC, Chen XY, Tu Y. Elastic modulus affects the growth and differentiation of neural stem cells. Neural Regen Res. 2015;10(9):1523-1527. doi:10.4103/1673-5374.165527 6
© Copyright 2026 Paperzz