Reforming of Biogas: optimal conditions through thermodynamics and MCDM analysis Fabio De Rosa School of Chemistry and Chemical Engineering, CenTACat, Queen’s University Belfast Supervisors : Professor David Rooney, Dr Beatrice Smyth, Dr Geoffrey McCullough, Dr Alex Goguet Biogas exploitation roadmap Biogas Combustion ICE (heat & power) Upgrading - CH4 compression - CH4 liquefaction Surplus energy exploitation Sabatier reaction Liquid fuel production Gasoline, diesel, methanol Hydrogen production Fuel cells (heat & power) Reforming technologies to syngas (CO + H2) Biogas exploitation roadmap – focus on reforming Main target : Find the “best way” to reformate Biogas into Syngas Biogas Liquid fuel production Hydrogen production Reforming technologies to syngas (CO + H2) Reforming technologies Biogas as a feedstock Technology Biogas dry-oxidative reforming (BG DOR) Biogas dry-oxidative reforming (autothermal) (BG DOR (ATR)) Biogas steam reforming (BG SR) Biogas steam reforming (autothermal) (BG SR(ATR)) Biogas tri-reforming (BG TRI-R) Biogas tri-reforming (autothermal) (BG TRI-R(ATR)) Feed CH4, CO2, O2 CH4, CO2, O2 CH4, CO2, H2O CH4, CO2, H2O, O2 CH4, CO2, H2O, O2 CH4, CO2, H2O, O2 Technology BG DOR BG DOR(ATR) BG S R BG S R(ATR) BG TRI-R • • • CH4/CO 2/H2O/O 2 1/0.67/0/0.1 1/0.67/0/0.25 1/0.67/0/0.5 1/0.67/0/0.75 1/0.67/0/0.0015-0.8933 1/0.67/1/0 1/0.67/2/0 1/0.67/3/0 1/0.67/1/0-1.0725 1/0.67/2/0-1.1755 1/0.67/3/0-1.2815 1/0.67/1/0.1 1/0.67/1/0.25 1/0.67/1/0.5 1/0.67/1/0.75 1/0.67/2/0.1 8 reforming technologies; 32 reforming processes (feed sensitivity); Fixed CH4/CO2=1.5 (60% CH4, 40% CO2). Computer-aided simulations Technology (ctd) BG TRI-R(ATR) METHANE S R METHANE S R(ATR) CH4/CO 2/H2O/O 2 (ctd) 1/0.67/2/0.25 1/0.67/2/0.5 1/0.67/2/0.75 1/0.67/3/0.1 1/0.67/3/0.25 1/0.67/3/0.5 1/0.67/3/0.75 1/0.67/1/0-0.6839 1/0.67/2/0-0.7144 1/0.67/3/0-0.7471 1/0/1/0 1/0/2/0 1/0/3/0 1/0/1/0-0.6191 1/0/2/0-0.6524 1/0/3/0-0.6874 reference Reforming technologies under exam Relevant criteria for each process: - T (˚C) = operative temperature of the reactor; - yCH4 = molar fraction of CH4 unconverted; - yCO2 = molar fraction of CO2 unconverted; - yCO = molar fraction of CO produced; - yH2 = molar fraction of H2 produced; - yCOKE = molar fraction of C formed; - η (%) = LHV-based thermal efficiency; - Heat (KW) = thermal energy to supply to the system. Step 1 - ASPEN Plus thermodynamic simulations Ein - Eout Advanced System for Process Engineering (ASPEN); Ideal separation units (S); Heat exchangers and mixers (H, M); RGibbs reactor (R) (Gibbs free energy minimization); Peng-Robinson EoS. Methane Steam Reforming 1 mol/s Biogas (60% CH4, 40% CO2), P=1 bar, T=200-1200˚C, ΔT≈35˚C (30 alternatives) Step 1 - ASPEN Plus thermodynamic simulations Methane Steam Reforming, P=1 bar, CH4/CO2/H2O/O2=1/0/1/0 0.8 0.7 Molar fraction at the outlet (y) 0.6 0.5 yCH4 yCO2 0.4 yH2O yCO 0.3 yH2 yCOKE 0.2 0.1 0 200 300 400 500 600 700 T (˚C) 800 900 1000 1100 1200 Step 1 - ASPEN Plus thermodynamic simulations Methane Steam Reforming, P=1 bar, CH4/CO2/H2O/O2=1/0/1/0 100 300 90 250 80 200 70 150 % 100 50 50 40 0 30 -50 20 -100 10 0 200 300 400 500 600 700 T (˚C) 800 900 1000 1100 -150 1200 Heat (KW) 60 xCH4 xCO2 η (%) Heat (KW) Step 1 - ASPEN Plus thermodynamic simulations 1 mol/s Biogas (60% CH4, 40% CO2), P=1 bar, T=200-1200˚C, ΔT≈35˚C (30 alternatives) Molar fraction at the outlet (y) 0.8 0.7 0.6 yCH4 0.5 yCO2 0.4 yH2O 0.3 yCO 0.2 yH2 0.1 yCOKE 0 200 400 600 800 1000 1200 T (˚C) (30 x 8) matrix Step 1 - ASPEN Plus thermodynamic simulations Target: Find a trade-off between cost (T, yCH4, yCO2, yCOKE, Heat) and benefit (yCO, yH2, η) criteria: Multi Criteria Decision Making (MCDM) techniques (30 x 8) matrix Step 2 – MCDM techniques: TOPSIS method Technique for Order Preference by Similarity to the Ideal Solution (goal-based decision-making technique); It individuates the closest alternatives to the positive-ideal solution (PIS) and the negative-ideal solution (NIS); PIS = maximizes all the benefit criteria (yH2, yCO, η), minimizing the cost ones (T, yCH4, yCO2, yCOKE, Heat); Alternatives are ranked according to the Closeness to the PIS, C*(C*(PIS)=1, C*(NIS)=0); It is rationable and understandable; The method needs information about the relative importance of the criteria under exam (weights) Example: Biogas Steam Reforming, P=1 bar, CH4/CO2/H2O/O2=1/0/1/0 0.3 0.25 0.2 How do we choose weights? 0.15 0.1 0.05 0 yCOKE yCH4 yCO2 Criterion 2 (increasing preference) 0.35 yCO Heat (KW) NIS η (%) Closeness to the ideal solution (C*) 1 Weight • • • • • • PIS 0.9 0.8 0.7 0.6 98% Tolerance on C*max 0.5 0.4Alternative 1 0.3 0.2 0.1 0 yH2 T (˚C) 200 400 600 800 T (˚C) Criterion 1 (increasing preference) 1000 1200 Step 2 – MCDM techniques: entropy method • • • Used to determine the objective weights of the indexes for MCDM problems ; It measures the quantity of useful information provided by data itself ; If the data distribution is narrow the entropy is small, the considered criterion provides more useful information and the corresponding weight should be set high, compared to another criterion with a broader distribution. Example: Biogas Dry-Oxidative Reforming, P=1 bar, CH4/CO2/H2O/O2=1/0.67/0/x 0.8 0.14 0.7 0.12 0.6 0.1 0.08 Weight 0.5 O2/CH4=0.1 0.06 0.4 O2/CH4=0.25 0.04 0.3 O2/CH4=0.5 0.02 O2/CH4=0.75 0.2 O2/CH4=0.1 O2/CH4=0.25 O2/CH4=0.5 O2/CH4=0.75 0 200 700 1200 0.1 0 T (°C) yCH4 yCO2 yCO yH2 yCOKE η (%) Heat (KW) • yCOKE decreasing • WeightyCOKE increasing Step 3 – Proposed method Thermodynamic … Process 32 ASPEN Plus Process 1 32 matrixes (30 x 8) Raw Data Matrix (960 x 8) (T, yCH4, yCO2 etc.) MCDM Entropy Method Weights TOPSIS Method C* ranking (98% tolerance on C*max) Weight Step 3 – Proposed method: results 0.45 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0 yCOKE yCH4 yCO 98% tolerance on C*max 0.97 Closeness to the ideal solution (C*) yH2 Heat η (%) yCO2 T (˚C) (KW) 0.96 0.95 0.94 0.93 BG DOR 1/0.67/0/0.25 0.92 BG SR 1/0.67/1/0 0.91 BG TRI-R 1/0.67/1/0.1 METHANE SR 1/0/1/0 0.9 600 700 800 900 T (˚C) 1000 1100 1200 Step 3 – Proposed method: results 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 BG SR CH4/CO2/H2O/O2=1/0.67/1/0 yCH4 yCO2 yCO yHYD yCOKE 200 700 1200 Molar fraction at the outlet (y) Molar fraction at the outlet (y) BG DOR CH4/CO2/H2O/O2=1/0.67/0/0.25 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 yCH4 yCO2 yCO yHYD yCOKE 200 T (˚C) METHANE SR CH4/CO2/H2O/O2=1/0/1/0 yCH4 yCO2 yCO yHYD yCOKE T (˚C) 1200 Molar fraction at the outlet (y) Molar fraction at the outlet (y) 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 700 1200 T (˚C) BG TRI-R CH4/CO2/H2O/O2=1/0.67/1/0.1 200 700 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 yCH4 yCO2 yCO yHYD yCOKE 200 700 T (˚C) 1200 Step 3 – Proposed method: results 700 % xCH4 xCO2 η (%) Heat (KW) 100 90 80 70 60 50 40 30 20 10 0 200 200 700 T (˚C) xCO2 η (%) Heat (KW) METHANE SR CH4/CO2/H2O/O2=1/0.67/1/0 xCH4 xCO2 η (%) Heat (KW) % Title % BG TRI-R CH4/CO2/H2O/O2=1/0.67/1/0.1 400 350 300 250 200 150 100 50 0 1200 xCH4 T (˚C) T (˚C) 100 90 80 70 60 50 40 30 20 10 0 700 400 350 300 250 200 150 100 50 0 1200 100 90 80 70 60 50 40 30 20 10 0 200 700 T (˚C) 400 350 300 250 200 150 100 50 0 1200 Title 200 400 350 300 250 200 150 100 50 0 1200 Hat (KW) % 100 90 80 70 60 50 40 30 20 10 0 Title BG SR CH4/CO2/H2O/O2=1/0.67/1/0 BG DOR CH4/CO2/H2O/O2=1/0.67/0/0.25 xCH4 xCO2 η (%) Heat (KW) Conclusions and future work Conclusions: Future work: The more proposed is rational analysis and straightforward; •• Add casesmethod to the sensitivity on the feeds; Multiple be taken into(e.g. consideration in the assessment of •• Add morecriteria criteriacan to the method economical); the effectiveness of therig process, rather than η alone; • Set-up an experimental for simulated biogas tri-reforming (on going); Biogas can be employedthe as adata methane/natural gas substitute for reforming processes •• Validate experimentally from thermodynamic simulations plus MCDM analysis; over an operating conditions. Interestingly biogas results inroadmap slightly • Apply theeffective methodrange to theofother processes reported in the biogas exploitation thanassessment. methane. inhigher orderoverall-performances to have a comprehensive Thanks for listening This project has received funding from the European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreement n. 316838 Project coordinated by the QUESTOR Centre at Queen’s University Belfast www.qub.ac.uk/questor
© Copyright 2026 Paperzz