Calculus Notes Test 2

Chapter 3
3.1 Limits
The limit of a function
Consider the function ๐‘“(๐‘ฅ) = ๐‘ฅ 2 โˆ’ ๐‘ฅ + 2 for values of x near 2. The table below gives the values of ๐‘ฆ = ๐‘“(๐‘ฅ) when
x is closed to 2, but not equal to 2. We can see that the closer x approaches 2 from either side, the closer ๐‘“(๐‘ฅ)
approaches 4.
To express this situation, we can write lim ๐‘“(๐‘ฅ) = lim ๐‘ฅ 2 โˆ’ ๐‘ฅ + 2 = 4.
๐‘ฅโ†’2
๐‘ฅโ†’2
In general, the limit of the function ๐‘“(๐‘ฅ) tell us what value the function is โ€œapproaching toโ€ when ๐‘ฅ is approaching a
number say ๐‘ฅ = ๐‘Ž in the domain of the function. The limit of the function does not refer to f (a) (the value the
function takes at ๐‘ฅ = ๐‘Ž.)
๐‘ฅ 2 โˆ’1
๐‘–๐‘“ ๐‘ฅ โ‰  1
Example1: Consider the piecewise function ๐‘”(๐‘ฅ) = { ๐‘ฅโˆ’1
}. Find lim ๐‘”(๐‘ฅ), and ๐‘”(1).
๐‘ฅโ†’1
โˆ’1 ๐‘–๐‘“ ๐‘ฅ = 1
Solution: This is a linear function with a discontinuity at ๐‘ฅ = 1. We can see that when x approaches 1, ๐‘”(๐‘ฅ)
approaches 2, so lim ๐‘”(๐‘ฅ) = 2, whereas ๐‘”(1) = โˆ’1.
๐‘ฅโ†’1
From this example we can see that lim ๐‘”(๐‘ฅ) โ‰  ๐‘”(1).
๐‘ฅโ†’1
Example 2: Find lim ๐‘“(๐‘ฅ), and ๐‘“(3) in the figure below:
๐‘ฅโ†’3
Solution: We can see that when x approaches 3, ๐‘“(๐‘ฅ) approaches 4, so lim ๐‘“(๐‘ฅ) = 4. Since 3 is not in the domain
๐‘ฅโ†’3
of ๐‘“ , ๐‘“(3) is undefined.
From this example we can see that the limit exists at 3 even though ๐‘“(3) is undefined.
One- Sided Limits
The theorem tells us that for the limit to exist, the limit from the right has to equal the limit from the left.
Example 3: A Function with a Jump: Find limโˆ’ ๐‘”(๐‘ฅ), lim+ ๐‘”(๐‘ฅ)and lim ๐‘”(๐‘ฅ) in the figure below:
๐‘ฅโ†’2
๐‘ฅโ†’2
๐‘ฅโ†’2
Solution: As x approaches 2 from the left, ๐‘” approaches 4. Therefore, limโˆ’ ๐‘”(๐‘ฅ) = 4.
๐‘ฅโ†’2
As x approaches 2 from the right, ๐‘” approaches 1. Therefore, lim+ ๐‘”(๐‘ฅ) = 1.
๐‘ฅโ†’2
lim ๐‘”(๐‘ฅ) does not exist (DNE) because limโˆ’ ๐‘”(๐‘ฅ) โ‰  lim+ ๐‘”(๐‘ฅ). (The right limit differs than the left limit)
๐‘ฅโ†’2
๐‘ฅโ†’2
๐‘ฅโ†’2
Finding Limits Algebraically (Limits Laws)
Example 4: Finding Limit by Canceling Common Factors: Find lim
๐‘ฅ 2 โˆ’1
๐‘ฅโ†’1 ๐‘ฅโˆ’1
Solution: lim
๐‘ฅ 2 โˆ’1
๐‘ฅโ†’1 ๐‘ฅโˆ’1
= lim
๐‘ฅโ†’1
(๐‘ฅโˆ’1)(๐‘ฅ+1)
๐‘ฅโˆ’1
.
= lim ๐‘ฅ + 1 = 2 .
๐‘ฅโ†’1
Example 3: Finding Limit by Simplifying: Find lim
(3+โ„Ž)2 โˆ’9
โ„Ž
โ„Žโ†’0
.
โˆš๐‘ฅโˆ’1
๐‘ฅโ†’1 ๐‘ฅโˆ’1
Example 4: Finding Limit by Rationalizing: Find lim
Solution: lim
โˆš๐‘ฅโˆ’1
๐‘ฅโ†’1 ๐‘ฅโˆ’1
= lim
(โˆš๐‘ฅโˆ’1)(โˆš๐‘ฅ+1)
๐‘ฅโ†’1 (๐‘ฅโˆ’1)(โˆš๐‘ฅ+1)
where we have multiplied numerator and denominator by the conjugate of the
numerator(โˆš๐‘ฅ + 1). This makes the numerator a difference of squares, so lim
lim
1
๐‘ฅโ†’1 (โˆš๐‘ฅ+1)
(โˆš๐‘ฅโˆ’1)(โˆš๐‘ฅ+1)
๐‘ฅโ†’1 (๐‘ฅโˆ’1)(โˆš๐‘ฅ+1)
โˆš๐‘ฅโˆ’1
1
= . If you realize that ๐‘ฅ โˆ’ 1 is a difference of squares, you have lim
2
๐‘ฅโ†’1 ๐‘ฅโˆ’1
Example 5: The Limit of a Piecewise Function: Find lim๐‘“(๐‘ฅ) if it exist, where
๐‘ฅโ†’4
โˆš๐‘ฅ โˆ’ 4
๐‘“(๐‘ฅ) = {
8 โˆ’ 2๐‘ฅ
๐‘–๐‘“ ๐‘ฅ > 4
}
๐‘–๐‘“ ๐‘ฅ < 4
Solution: Since ๐‘“(๐‘ฅ) = โˆš๐‘ฅ โˆ’ 4
๐‘–๐‘“ ๐‘ฅ > 4, lim+๐‘“(๐‘ฅ) = lim+โˆš๐‘ฅ โˆ’ 4 = 0.
Since ๐‘“(๐‘ฅ) = 8 โˆ’ 2๐‘ฅ
๐‘–๐‘“ ๐‘ฅ < 4, limโˆ’๐‘“(๐‘ฅ) = limโˆ’8 โˆ’ 2๐‘ฅ = 0.
๐‘ฅโ†’4
๐‘ฅโ†’4
๐‘ฅโ†’4
๐‘ฅโ†’4
Since the right and left-hand limits are equal, the limit exist, and lim๐‘“(๐‘ฅ) = 0.
๐‘ฅโ†’4
= lim
= lim
(๐‘ฅโˆ’1)
=
๐‘ฅโ†’1 (๐‘ฅโˆ’1)(โˆš๐‘ฅ+1)
(โˆš๐‘ฅโˆ’1)
1
๐‘ฅโ†’1 (โˆš๐‘ฅโˆ’1)(โˆš๐‘ฅ+1)
=
2
Infinite Limits
Example 6: An Infinite Limit from the Graph: Find lim (๐‘ฅ 2
๐‘ฅโ†’1
Solution: The graph of ๐‘“(๐‘ฅ) = (๐‘ฅ 2
๐‘ฅ
โˆ’1)2
๐‘ฅ
โˆ’1)2
and lim
๐‘ฅ
๐‘ฅโ†’โˆ’1 (๐‘ฅ 2 โˆ’1)2
in figure below shows that as x approaches 1 from either side, the values of ๐‘“
grow arbitrarily large, so the limit does not exist and we write lim (๐‘ฅ 2
๐‘ฅโ†’1
๐‘ฅ
โˆ’1)2
=โˆž
As x approaches โˆ’1 from either side, the values of ๐‘“ are negative grow arbitrarily large in magnitude, so the limit
๐‘ฅ
does not exist and we write lim (๐‘ฅ 2 2 = โˆ’โˆž
๐‘ฅโ†’โˆ’1
โˆ’1)
Example 7: Evaluating Limits Analytically: Find lim+
๐‘ฅ 2 +๐‘ฅโˆ’2
(๐‘ฅโˆ’1)2
๐‘ฅโ†’1
Solution: lim+
๐‘ฅ 2 +๐‘ฅโˆ’2
๐‘ฅโ†’1
limโˆ’
๐‘ฅ 2 +๐‘ฅโˆ’2
๐‘ฅโ†’1
lim
(๐‘ฅโˆ’1)2
๐‘ฅ 2 +๐‘ฅโˆ’2
๐‘ฅโ†’1 (๐‘ฅโˆ’1)2
(๐‘ฅโˆ’1)2
= limโˆ’
= lim+
๐‘ฅ+2
๐‘ฅโ†’1 ๐‘ฅโˆ’1
= lim
๐‘ฅ+2
๐‘ฅโ†’1 ๐‘ฅโˆ’1
๐‘ฅ+2
๐‘ฅโ†’1 ๐‘ฅโˆ’1
, limโˆ’
๐‘ฅโ†’1
๐‘ฅ 2 +๐‘ฅโˆ’2
(๐‘ฅโˆ’1)2
.and lim
๐‘ฅ 2 +๐‘ฅโˆ’2
๐‘ฅโ†’1 (๐‘ฅโˆ’1)2
.
= โˆž since the function is positive approaching ๐‘ฅ = 1 from the positive side.
= โˆ’โˆž, since the function is negative approaching ๐‘ฅ = 1 from the negative side.
DNE since the right limit differs from the left limit.
Limits at Infinity
If ๐‘“(๐‘ฅ) becomes arbitrarily close to a finite number L for all sufficently large positive x, then we write
lim ๐‘“(๐‘ฅ) = ๐ฟ. We say that the limit of ๐‘“ as x approaches โˆž is L. In this case the line y = L is a horizontal
๐‘ฅโ†’โˆž
asymptote. The limit at negative infinity lim ๐‘“(๐‘ฅ) = ๐‘€, is defined analogously and in this case the horizontal
๐‘ฅโ†’โˆ’โˆž
assymptore is the line y = M.
Example 8: Limits at Infinity: Find lim
1
๐‘ฅโ†’±โˆž ๐‘ฅ 2
.
Solution: As the denominator becomes infinitely large, both for positive and negative numbers, the numerator tends
1
to zero, so lim 2 = 0.
๐‘ฅโ†’±โˆž ๐‘ฅ
Example 9: Limits at Infinity of Rational Functions: Find lim
6๐‘ฅ 2 +2๐‘ฅ+1
๐‘ฅโ†’±โˆž 3๐‘ฅ 2 +3๐‘ฅโˆ’2
.
Solution: Divide both the numerator and denominator by x raised to the highest power in the denominator, so
lim
6๐‘ฅ 2 +2๐‘ฅ+1
๐‘ฅโ†’±โˆž 3๐‘ฅ 2 +3๐‘ฅโˆ’2
= lim
2
1
3
2
6+ + 2
๐‘ฅ ๐‘ฅ
๐‘ฅโ†’±โˆž 3+๐‘ฅโˆ’ 2
๐‘ฅ
= 2.
Example 10: Infinite Limits at Infinity: Find lim
6๐‘ฅ 3
๐‘ฅโ†’โˆ’โˆž ๐‘ฅ 2 +1
Solution: lim
6๐‘ฅ 3
๐‘ฅโ†’โˆ’โˆž ๐‘ฅ 2 +1
= lim
6๐‘ฅ
1
๐‘ฅโ†’โˆ’โˆž 1+ 2
๐‘ฅ
.
= โˆ’โˆž.
Example 11: Limits with Absolute Values: Find lim
|๐‘ฅ|
๐‘ฅโ†’โˆ’0 ๐‘ฅ
๐‘ฅ ๐‘–๐‘“ ๐‘ฅ โ‰ฅ 0
Solution: Since |๐‘ฅ| = {
,
โˆ’๐‘ฅ ๐‘–๐‘“ ๐‘ฅ < 0
|๐‘ฅ|
๐‘ฅ
.
1 ๐‘–๐‘“ ๐‘ฅ โ‰ฅ 0
|๐‘ฅ|
={
so lim
does not exist (DNE)
โˆ’1 ๐‘–๐‘“ ๐‘ฅ < 0
๐‘ฅโ†’โˆ’0 ๐‘ฅ
Your Turn:
1) Find the Following limits. If the limit does not exist (DNE) explain why.
lim โ„Ž(๐‘ฅ) =
lim โ„Ž(๐‘ฅ) =
๐‘ฅโ†’3โˆ’
โˆš๐‘ฅโˆ’2
๐‘ฅโ†’2 ๐‘ฅโˆ’4
2) lim
3) lim
=
๐‘ฅ 2 โˆ’4
=
๐‘ฅโ†’โˆ’2 ๐‘ฅ+2
4) lim
๐‘ฅ 2 โˆ’5๐‘ฅ+6
๐‘ฅโ†’โˆ’1 ๐‘ฅ 2 โˆ’2๐‘ฅโˆ’3
5) lim+ ln(๐‘ฅ) =
๐‘ฅโ†’0
6) lim
๐‘ฅ 3 +1
๐‘ฅโ†’โˆ’โˆž 3๐‘ฅ 2 โˆ’2
=
6๐‘ฅ 3
7) Find lim
๐‘ฅโ†’โˆ’โˆž ๐‘ฅ 2 +1
8) lim
3๐‘ฅ
๐‘ฅโ†’โˆž 2๐‘ฅ+1
9) lim
=
๐‘ฅ+1
๐‘ฅโ†’โˆ’โˆž 4๐‘ฅ 2 +1
=
10) lim eโˆ’๐‘ฅ =
๐‘ฅโ†’โˆž
๐‘ฅโ†’3+
=
lim โ„Ž(๐‘ฅ) =
๐‘ฅโ†’3
lim โ„Ž(๐‘ฅ) =
๐‘ฅโ†’โˆ’2
lim โ„Ž(๐‘ฅ) =
๐‘ฅโ†’2
3.2 Continuity
1) Determine if each of the functions below are continuous. If not, describe the condition it does
not satisfy.
2) Find all values of x where the piecewise function is discontinuous.
๏ƒฌ5 x ๏€ญ 4
๏ƒฏ
f ( x) ๏€ฝ ๏ƒญ x 2
๏ƒฏx ๏€ซ 6
๏ƒฎ
if x ๏€ผ 0
if 0 ๏‚ฃ x ๏‚ฃ 3
if x ๏€พ 3
3) Find the points of discontinuity of ๐‘“(๐‘ฅ) =
|๐‘ฅโˆ’1|
๐‘ฅโˆ’1
. Give the limit of the function at the points
of discontinuity.
2๐‘ฅ + 2
4)
Use limit to find k such that โ„Ž(๐‘ฅ) = {๐‘˜
2
๐‘–๐‘“ ๐‘ฅ < 1
๐‘–๐‘“ ๐‘ฅ โ‰ฅ 1
} is continuous at x=1.
3.3 Average Rate of Change
1) The graph below shows the percentage of households in the United State with landlines
telephones for the years 2005-2009. Find the average rate of change in the percent of
households with landlines between 2007 and 2009.
2) Find the instantaneous rate of change of ๐‘“(๐‘ฅ) = ๐‘ฅ 2 โˆ’ 3๐‘ฅ + 4 at the point ๐‘ฅ = 2.
3) A company determines that the cost of manufacturing x cases of DVD is given by
๐ถ(๐‘ฅ) = ๐‘ฅ 2 โˆ’ 2๐‘ฅ + 12. Find (a) the average rate of change of cost per case for
manufacturing between 3 and 5 cases, (b) the cost when production is increased from 4 to
5 cases, and (c) the instantaneous rate of change of cost with respect to the number of
cases produced when 4 cases are produced.
4) Use the alternate form to find part c of the previous problem.
3.4 Definition of the Derivative
Slope of the Secant Line
The slope of the secant line at the point between the points ๐‘ฅ = ๐‘Ž and ๐‘ฅ = ๐‘ on the function
๐‘“(๐‘)โˆ’๐‘“(๐‘Ž)
๐‘ฆ = ๐‘“(๐‘ฅ) is given by ๐‘š๐‘ ๐‘’๐‘ = ๐‘โˆ’๐‘Ž
to find the Average Rate of Change.
Slope of the Tangent line
. This is the same expression we used on the last section
This is the definition we used on the last section to find the Instantaneous Rate of Change.
1) For the graph of ๐‘“(๐‘ฅ) = ๐‘ฅ 2 โˆ’ ๐‘ฅ, find (a) the equation of the secant line through the
points ๐‘ฅ = โˆ’2 and ๐‘ฅ = 1, and (b) the equation of the tangent line at ๐‘ฅ = 1.
The Derivative
The derivative is denoted with a prime, and ๐‘“โ€ฒ(๐‘ฅ) is read โ€œf -prime of xโ€.
The process of finding derivatives is called differentiation.
The difference quotient and the derivative have many interpretations.
The difference quotient is the same expression
๐‘“(๐‘)โˆ’๐‘“(๐‘Ž)
๐‘โˆ’๐‘Ž
, if we let ๐‘Ž = ๐‘ฅ, and
๐‘ =๐‘Ž+โ„Ž
There is an alternate form of the derivative
2) Find the derivative of ๐‘“(๐‘ฅ) = ๐‘ฅ 2 โˆ’ ๐‘ฅ, and then find ๐‘“โ€ฒ(โˆ’2).
3) The cost in dollars of manufacturing x graphing calculator is given by
๐ถ(๐‘ฅ) = 10๐‘ฅ โˆ’ 0.002๐‘ฅ 2 , find the rate of change of the cost when producing 100
calculators.
4) Find the equation of the tangent line to the graph of ๐‘“(๐‘ฅ) = โˆš๐‘ฅ at ๐‘ฅ = 4
Existence of the Derivative
Chapter 4
4.1 Techniques for Finding Derivatives
Constant Rule: If ๐‘“(๐‘ฅ) = ๐‘˜, ๐‘“โ€ฒ(๐‘ฅ) = 0 for any real number ๐‘˜.
Power Rule: If ๐‘“(๐‘ฅ) = ๐‘ฅ ๐‘› , ๐‘“โ€ฒ(๐‘ฅ) = ๐‘›๐‘ฅ ๐‘›โˆ’1 for any real number ๐‘›.
Constant times a Function; If ๐‘“(๐‘ฅ) = ๐‘˜๐‘”(๐‘ฅ), and ๐‘”โ€ฒ(๐‘ฅ) exists, ๐‘“โ€ฒ(๐‘ฅ) = ๐‘˜๐‘”โ€ฒ(๐‘ฅ) for any real
number ๐‘˜.
Sum or Difference Rule: If ๐‘“(๐‘ฅ) = ๐‘ข(๐‘ฅ) ± ๐‘ฃ(๐‘ฅ), where ๐‘ขโ€ฒ(๐‘ฅ) and ๐‘ฃโ€ฒ(๐‘ฅ) exist,
๐‘“โ€ฒ(๐‘ฅ) = ๐‘ขโ€ฒ(๐‘ฅ) ± ๐‘ฃโ€ฒ(๐‘ฅ).
1) Find the derivative of the following functions:
a) ๐‘“(๐‘ฅ) =
๐‘ฅ 2 โˆ’1
๐‘ฅโˆ’1
.
b) ๐‘”(๐‘ฅ) = (๐‘ฅ โˆ’ 1)2 (๐‘ฅ + 1).
c) โ„Ž(๐‘ฅ) =
9
3
โˆš๐‘ฅ
1
2
3
d) ๐‘“(๐‘ก) = ๐‘ก โˆ’ ๐‘ก 2 + ๐‘ก 3
e) ๐‘ฆ = 10๐‘ฅ โˆ’3 โˆ’ 6๐‘ฅ โˆ’4
๐‘‘
f) ๐‘‘๐‘ฅ (๐œ‹ 4 + 1) =
2) For ๐‘“(๐‘ฅ) = 2๐‘ฅ 3 + 9๐‘ฅ 2 โˆ’ 60๐‘ฅ + 4, find all values of ๐‘ฅ where the tangent line is horizontal.
Marginal Analysis:
The Marginal Cost ๐ถ โ€ฒ (๐‘ฅ), where ๐‘ฅ is the number of items, is an approximation of the cost of
producing the ๐‘ฅ + 1 item.
5) Suppose that the total cost in hundreds of dollars to produce ๐‘ฅ thousand barrels of a beverage
is given by ๐ถ(๐‘ฅ) = 5๐‘ฅ 3 โˆ’ 10๐‘ฅ 2 + 75. Approximate the cost of producing the 101st thousand
barrels. Find the actual cost.
The Marginal Revenue ๐‘… โ€ฒ (๐‘ž), where ๐‘ž is the number of units, is an approximation of the revenue
of selling the ๐‘ž + 1 unit.
6) If the demand function is given by ๐‘(๐‘ž) = 16 โˆ’ 1.25๐‘ž, find the marginal revenue when ๐‘ž =
5. Recall that the demand function, defined by ๐‘ = ๐ท(๐‘ž), relates the number of units ๐‘ž of an
item that consumers are willing to purchase at the price ๐‘. The revenue
๐‘…(๐‘ž) = ๐‘๐‘ž
The Marginal Profit ๐‘ƒโ€ฒ (๐‘ž), where ๐‘ž is the number of items, is an approximation of the profit of
producing and selling the ๐‘ž + 1 item.
7) The cost of producing x items is given by ๐ถ(๐‘ฅ) = โˆ’0.02๐‘ฅ 2 + 50๐‘ฅ + 100, at a price of ๐‘ =
100 โˆ’ 0.01๐‘ฅ. Find the profit obtained by selling the next item, given that 500 have already
sold.
4.2 Derivatives of Products and Quotients
4) Use the product rule to find the derivative of โ„Ž(๐‘ฅ) = ๐‘ฅ 2 (๐‘ฅ + 1). Compare your answer when
you differentiate by expanding the function first.
7) Use the quotient rule to find the derivative of ๐‘“(๐‘ฅ) =
๐‘ฅ 2 โˆ’1
๐‘ฅโˆ’1
. Compare your answer when you
differentiate by simplifying the function first.
Average and Marginal Average Cost
8) Suppose the cost is given by ๐ถ(๐‘ฅ) =
4๐‘ฅ+50
๐‘ฅ+2
. Find the marginal average cost.
4.3 The Chain Rule
The chain rule is used to find derivatives of composition of functions.
9) Write โ„Ž(๐‘ฅ) = (3๐‘ฅ โˆ’ 1)4 as a composition of two functions ๐‘“ and ๐‘” so that โ„Ž(๐‘ฅ) = ๐‘“[๐‘”(๐‘ฅ)].
๐œ•๐‘ฆ
10) Find ๐œ•๐‘ฅ if ๐‘ฆ = (5๐‘ฅ 2 โˆ’ 6๐‘ฅ + 1)โˆ’3
11) Find ๐ท๐‘ฅ (5๐‘ฅ 2 โˆ’ 2๐‘ฅ)5
12) If ๐‘“(๐‘ฅ) = โˆš๐‘”(๐‘ฅ 2 ) , then find ๐‘“โ€ฒ(๐‘ฅ).
d
5
13) ๐‘‘๐‘ฅ (๐‘ฅ 2 โˆ’๐‘ฅ)2 =
14) Find ๐‘”โ€ฒ(๐‘ฅ) if ๐‘”(๐‘ฅ) = ๐‘ฅ(๐‘ฅ 2 + 5๐‘ฅ)3 .
๐‘ฅ
15) Find โ„Žโ€ฒ(๐‘ฅ) if โ„Ž(๐‘ฅ) = (2๐‘ฅ 2 +6๐‘ฅ)4.
4.4 Derivatives of Exponential Functions
Derivative of ex
To find the derivative of f(x) = ex we will use the definition of the derivative.
d
f ( x ๏€ซ h) ๏€ญ f ( x )
[ f ( x)] ๏€ฝ lim
h ๏‚ฎ0
dx
h
d x
e x๏€ซh ๏€ญ e x
[e ] ๏€ฝ lim
h ๏‚ฎ0
dx
h
Using a law of exponents e x ๏€ซ h ๏€ฝ e x e h and so the above limit becomes
d x
e x eh ๏€ญ e x
[e ] ๏€ฝ lim
h ๏‚ฎ0
dx
h
The numerator can be factored and we get
d x
e x (eh ๏€ญ 1)
eh ๏€ญ 1
[e ] ๏€ฝ lim
๏€ฝ e x lim
h ๏‚ฎ0
h ๏‚ฎ0
dx
h
h
To get an estimate of the limit above we will look at a table of values.
e h ๏€ญ1
h
h
๏‚ ๏€ 
0.1
1.052
0.01
1.005
0.001
1.0005
0.0001
1.0001
0.00001
1.000005
This gives the formula
d x
[e ] ๏€ฝ e x
dx
1) Find the equation of the tangent line to y = ex at x = 0.
๏‚ ๏€  on the curve y = ex at x = 0 is (0, e0) = (0,1). The slope of the tangent line is
Solution: The point
d x
[e ] ๏€ฝ e x . At x = 0 the slope = e0 = 1. Thus the equation of the tangent line is y โ€“ 1 =
dx
1(x โ€“ 0) or simplified we get y = x + 1.
2) Find the derivative of f(x) = x2ex.
๏‚ ๏€ 
Solution: Using the product rule gives
d 2 x
d
d
[x e ] ๏€ฝ [x 2 ]* e x ๏€ซ x 2 * [e x ]
dx
dx
dx
๏‚ ๏€ 
๏‚ ๏€ 
d 2 x
[x e ] ๏€ฝ 2xex ๏€ซ x 2e x .
dx
In most applications the function involved is not just ๐‘’ ๐‘ฅ but rather instead functions which have
the form e f (x ) . As we will see, this type of function can be differentiated using the Chain Rule.
Suppose that y = e f (x ) . Let u = f(x). Then y = e u . By the Chain Rule
๏‚ ๏€ 
๏‚ ๏€ 
dy dy du
๏€ฝ
dx du dx
๏‚ ๏€ 
dy dy du d u du u du
๏€ฝ
๏€ฝ [e ] ๏€ฝ e
๏€ฝ e f (x) f ๏‚ข๏€ (x)
dx du dx du
dx
dx
๏‚ ๏€ 
This result is worth emphasizing.
d f (x )
[e ] ๏€ฝ e f (x ) f ๏‚ข๏€ (x)
dx
๏‚ ๏€ 
๏‚ ๏€ 
2
3) Find the derivative of P(x) ๏€ฝ10e๏€ญx .
Solution: Using the formula in the box above we get
๏‚ ๏€ 
P ๏‚ข๏€ (x) ๏€ฝ10
2 d
2
d ๏€ญx 2
[e ] ๏€ฝ10e๏€ญx
[๏€ญx 2 ] ๏€ฝ10e๏€ญx (๏€ญ2x)
dx
dx
P๏‚ข๏€ (x) ๏€ฝ ๏€ญ20xe๏€ญx
2
Derivative
of ๐‘Ž ๐‘ฅ
๏‚ ๏€ 
For any
๏‚ ๏€  positive constant ๐‘Ž โ‰  0
๐‘ฅ
๐‘‘๐‘Ž ๐‘ฅ ๐‘‘[๐‘’ ๐‘™๐‘›๐‘Ž ] ๐‘‘[๐‘’ ๐‘ฅ๐‘™๐‘›๐‘Ž ] ๐‘‘[๐‘’ (๐‘™๐‘›๐‘Ž)๐‘ฅ ]
=
=
=
= ln(๐‘Ž) ๐‘’ (๐‘™๐‘›๐‘Ž)๐‘ฅ = ๐‘Ž ๐‘ฅ ln(๐‘Ž)
๐‘‘๐‘ฅ
๐‘‘๐‘ฅ
๐‘‘๐‘ฅ
๐‘‘๐‘ฅ
4) Find the derivative of ๐‘ฆ = 2๐‘ฅ .
Solution: Using the formula above,
d x
[2 ] ๏€ฝ 2x ln( 2)
dx
Suppose that y ๏€ฝ b f ( x ) , The derivative will be given by
๏‚ ๏€  d f ( x )
[b ] ๏€ฝ b f ( x ) ln(b) f ๏‚ข( x)
dx
5) Find the derivative of ๐‘“(๐‘ฅ) = 3โˆš๐‘ฅ .
3โˆš๐‘ฅ
๐‘‘
Solution: Using the formula above, ๐‘‘๐‘ฅ 3โˆš๐‘ฅ = 2
โˆš๐‘ฅ
ln(3).
6) Find the derivative of each of the following functions.
1.
V(t) ๏€ฝ100e๏€ญ2t
4.
f (x) ๏€ฝ e ๏€ซ 1
7.
๏‚ ๏€ 
y ๏€ฝ Ae cx where A and c are constants.
๏‚ ๏€ 
๏‚ ๏€ 
๏‚ ๏€ 
2.
f (x) ๏€ฝ 10e
5.
g(x) ๏€ฝ x 3 ๏€ซ 3x
x
๏‚ ๏€ 
3x
๏‚ ๏€ 
๏‚ ๏€ 
ex
x
3.
Q(x) ๏€ฝ
6.
1
p(t ) ๏€ฝ 40( )t
2
8.
y ๏€ฝ Axecx
9.
๏‚ ๏€ 
y ๏€ฝ 10(e 2x ๏€ซ 3) 7
10. y ๏€ฝ e ๏ฐ ๏€ซ ๏ฐ x
7) After the introduction of a new product, the percentage of public that is aware of the product
can be approximate by ๐ด(๐‘ก) = 10๐‘ก 2 2โˆ’๐‘ก , where t is the time in months. Find the rate of change of
๏‚ ๏€ 
the percentage of public that is aware of the product after 2 months.
4.5 Derivatives of Logarithmic Functions
7) Find the derivative of ๐‘“(๐‘ฅ) = ๐‘™๐‘œ๐‘”๐‘ฅ.
8) Find the derivative of ๐‘“(๐‘ฅ) = ๐‘™๐‘œ๐‘”3 ๐‘ฅ.
9) Find the derivative of ๐‘“(๐‘ฅ) = ln(๐‘ฅ 2 โˆ’ 2๐‘ฅ + 1).
10) Find the derivative of ๐‘”(๐‘ฅ) = log3 (5๐‘ฅ 2 โˆ’ 2).
11) Find the derivative of โ„Ž(๐‘ฅ) = ln ๐‘ฅ 2 โˆš๐‘ฅ 2 โˆ’ 1.
12) Find the derivative of ๐‘ฃ(๐‘ก) = ln |3๐‘ก 2 |.
13) The cost function for q units of a certain item is ๐ถ(๐‘ž) = 87๐‘ž + 100.The revenue function
40๐‘ž
for the same item is ๐‘…(๐‘ž) = 87๐‘ž + ln(๐‘ž).
a. Find the marginal cost.
b. Find the profit function.
c. Find the profit from one more unit sold when 8 units are sold.
14)
Suppose the cost is given by ๐ถ(๐‘ฅ) =
๐‘ฅ๐‘™๐‘›(๐‘ฅ)โˆ’50๐‘ฅ
๐‘ฅ+2
. Find the marginal average cost.