Ho w Y o r k Univ e r s i ty W ashi ngt o n S quar e C ol l eg e 1 ath e m at i c s R e s e arc h ~ Gr oup R e s ea r ch R ep o r t N o . EM- l } un de r C ontrac t N o . DETERM I N AT I ON FI EL DS J o s eph 3 . K e ll e r an d H e rber fi E Kel l e r . W ri t t en by : T i t l e pa g e M o r r i s Kl ine P ro j e c t Di re c t o r l 6 Numb e r e d A pr il , l9 n9 pag e s C O NT EN T S Ar ticle Pag e Ab s t rac t 1 . I nt r o duc t i o n m Fo rmul a t i on o f the Pr o bl em W C al cul a t i o n o f th e ’ D i s cus s i o n L J ac ob i an o f th e S olu t i o n A pp e ndi x AB STRAC T By an ext e ns i o n o f o r di nary ge om e t ri cal op t i c s ( o r ac ou s t i c s ) t he i n t e ns i ty o f t he r e fl e c t e d an d t ran s mi t t e d . f i el d s due t o a p o i n t s ou rc e i n th e p re s enc e o f an arb i t rary i nt er fac e b e t w e e n tw o . me di a i s found . A p ar t i cul ar c o ns e que nc e o f th e s o lu t i on i s t he gene r al l ens and s u rfac e s m i r r or . l aw and th e e qua t i ons fo r t he cau s t i c 1 . I nt r o duc t i o n The cal cul a t i o n o f t he e l ec t romagne t i c o r ac ou s t i c f i e l d at any W hen p o i n t i n sp ac e M axwe l l t io n o f ' tw o di ffe r en t m e di a ar e t ai ne d re s e n t ne c e s s i t at e s a s olu - s e quat i o ns o r th e wav e e q uat i o n o f ac ou s t i c s w i t h app r o b ounda ry c ondi t i ons i n ea c h c as e p riat e p o nl y f o r t h e s imp l e s t c o nf . Exac t s olu t i ons hav e b e en i gur a t i o ns l°2 ¢ ob- and appr ox im at e s o lu t i o ns hav e b e e n f ound by sp e c i al m ean s i n s ome oth e r c as e s ( e u 3 m e di a i s an arb i t r ar i l y curv e d thi n s h e l l ) . g . wh en o ne of t he ’ . A ‘ g e ne r al p r oc e dur e f o r o b t aini ng an app r o x imat e s o lu t i o n t o an el e c t r omagn e t i c o r ac ou s t ic p rob l e m i s th e m e th o d o f g e ome t r ic al op t i c s or ac ous t i c s . By thi s i t is m eant t ha t t he f i e l d q uan t i t i e s p r op agat e al o ng ray s wh i ch ar e de t e rm i n e d by t h e F e rma t p r i nc ip l e o f l e as t t im e and t hat th e s e ray s ob ey t he , law s o f r ef l e c t i o n an d r e frac t i o n at th e int e r f ac e b e t we e n t wo di f fere n t me d i a Fur t he rm o r e , i n t hi s me t h o d i t 6 t hems elv e s s i s a l s o p o s s ib l e t o de t e rmi ne t he f ie l d c omp o ne n t s s ome . ! t h in g wh i c h has no t o r dina r i ly b e en do ne in g e om e t r i c al op t i c s o r ac ous t i c s Thu s , fo r exampl e , th e r e fl e c t e d an d t rans m i t t e d fi e l d co mp o ne nt s at an int e r fac e ar e r e l a t e d t o t he inc i de n t f i e l d c omp o ne n t s by t h e w e l l Fre s ne l f o rmul a s o r t he c o rr e sp o ndi ng fo rmul ae i n ac ous t ic s Als o . known the f i e l d c omp o nent s v ary al ong a ray i nv e r s ely a s th e s quar e r o o t o f the v e l o c i t y an d o f t he ar e a of t he normal c r o s s s e c t i on o f an i nf i ni t e s ima l t ub e o f ray s c o nt ain i ng t he ray in qu e s t i on de t e rmi ne t he ge ome t r i c al O p t i c s or a c oi s t i c s b e exp e c t e d t ha t th i s s o lu t i o n wi l l b e ful l s o lu t i on c omp ar e d to . an fiel d c o mp l e t e ly j ¢ - I t is t o ade q uat e app ro x imat i on t o th e Ly at v e ry hi gh fr e q u enc i e s ( i on T he s e r e sul t s e nab l e o ne t o . s . a t wav el e n th s sma l l g th e d im e ns i ons o f th e As a ma t t er o f fac t R K Luneb e rg has sh own qui t e ge ne r al ly that the fi r s t t e rm s i n a symp t o t i c exp ans i o ns o f the s p ac e dep ende nc e o f the e l e c t r i c and magnet i c f i e l d v e ct o r s i s tha t g iv e n by g e o m e t r i c al op t i c s T h i s ma t e r ial wi l l appe ar i n a f o r t hc omi ng r ep o r t . . . "Fh a s e i s de t erm in e d by the p a t h l e ng t h al ong a ray . . . I n t h e p r e s e n t i nve s t iga t i on an i nc i den t f i e l d du e t o a po int s ourc e i s a s sume d t o imp i n e up o n an arb i t rar i l y curv e d or f lat i nt erfac e g whi c h s ep arat e s t w o h om og ene ous and i s o t r op i c m e dia t he r e f l e c t e d and t r ans m i t t e d f i e l d c o mp o ne nt s a t mi ne d oh t he ba s i s o f g e om et r i c al out l i ne ab ov e O i. p t ics , s . . any g p o i n t ar e det er - by ap ply ing t h e th e ory F o r th e c as e o f r e f l e c t i on th e p r obl em . The ma ni t u de s of al r e ady b e e n h as ’ 7 3 s o lv e d but i t i s i nc lu de d h e r e b e caus e th i s can b e do ne wi th no addi , t i o nal di f f i cul ty T h e t rans mi s s i o n pr o bl em has b e en t r e at e d by the 8 3 0 an d the p r e s en t cal cul a t i on c ons t i t ut e s a ch e c k on K i rchho ff me t ho d . Th e ch e c k f o r t h e t ha t s o lut i o n . K i r chho ff me t h o d appl i e d t o r e f l e c t i o n i s c ont a i n e d he re as w e l l as i n r e f er e nc e 3 . 2 . F o r mul a t i o n . o f A p o i nt . th e P ro bl em s ou r c e i s a s sum e d t o b e l o ca t e d at a p o in t in a h om og ene ou s i s o t r op i c me dium w i th p r opagat i on sp e ed V I ( a z 2 m e d i um , y) s epar at e s t hi s m e di um wi t h p r op agat i on sp e e d V T . The s urfac e fr o m a di ff e r en t h om oge ne ous i s o t rop i c . Th e magni t u de s o f th e r ef l e c t e d an d t rans m i t t e d f i el d c omp one nt s at t he su r fac e c an b e fmund i n t e rm s o f the inc i dent fi el d c omp on ent s and the F r e s ne l . f o rmul ae ( onl y f o r t ho s e sur fac e p o i nt s which c an b e c onnec t e d t o th e s our c e by a s t r ai gh t l i ne s e gm ent ly ing in the fi rs t me di um ) Let . r ep re s en t t h e amp l i t ude o f any f i e l d c omp one nt at the p o int due t o re fl e c t i on o r t r ans m i s s i o n 5 ge om e t r i cal p t i c s we h av e th e rel at i on . f r om th e surfac e . Th en fr om o wh e r e t hr ou gh i s t he p o i nt in wh i ch a r e fl e c t e d o r t ran smi t t e d i nt e r s e c t s t he s ur fac e 2 y ra is ' the r e fl e c t e d or t rans mi t t e d f i e l d c omp one n t a t th e sur fac e , whe r e i for r e fl e c t i on an d i cul a t e d, 2 f or t ran s m i s s i on . l Th e s e c ompo ne nt s c an b e cal - as p r ev i ous ly s t at e d , fr om t he i nc i de nt f i el d c omp on ent at t he sur fa c e . d cr Th e quan t i t y i s t h e ar e a i n wh ich an inf i ni t e s imal tub e o f r e fl e c t e d o r t r ans mi t t e d rays c ont a i ni ng t he cut s a pl an e p no rmal t o thi s r ay r ay thr ough and a t th e p o int ( see I Fi g ' p d . O is ‘ t he ar ea enc l o s e d by thi s s ame tub e o f r ay s o n a p lane y no rmal t o th e ra o f i nf i ni t e s imal ar i n qu e s t i o n a t t he p o i nt dw e a s th e rat i o / dG i s I n t h e l imi t Jus t t he Jac ob i an , J ( of th e t ran s f o rmat i o n e s t ab l i sh e d by r e fl e t e d o r t r ans mi t t e d rays , whi ch c map s th e p lan e p ' i nt o t h e pl ane p M am / . 3 . C al cul at i on .2 ) J 1 H enc e . /2 we may w r i t e a o f th e J ac ob i an un t be a v e c t o r no rmal t o i Let po i nt i ng i nt o t he f i r s t medium ; fr om r ay at t r ans m i t t e d r ay fl e c t i o n an d r e f rac t i o n !s that o f th e (2) T he dir e c t i on o f t h e i s g iv e n by th e . 4 m ee i 1 ' un i t by ' 3 ) I an d i s th e uni t v e c t o r p o int ing t o t he s our c e at fl e c t e d z ' vec tor r e- and whe r e , fr om t h e law s o f A pp end ix 1 1 ' r e- ] (l a o 5 t ) w e“ v ) 2 t If . (1 sin He r e n mi s s i o n . e! 1 i l f or r e fl e c t i on , i 2 f or r e frac t i on o r The angl e s and uni t v e c t o r s ar e s h own i n Fig . l . t r ans - -e T he uni t I and N hav e t he c omp on ent s v e c t o rs . : y 3. y e z 2 ‘ ( 3) 3 --L E( x ' A 4 o 2 3 — i : 0 whe r e : 2 t i ( x t , y I u 2 . (Kl -X ? V ‘ 4 ( 21 ' ) z . 2 and 2 The c o o r di na t e m e d ium sy s t e m 2 mus t b e s o ch o s e n tha t N p o i nt s int o the fi r s t . Fo r o n t he sur fac e t he e quat i on o f arb i t rary po i nt t he r e fl e c t e d o r t rans m i t t e d x' x 1 thr ough th i s p o i nt i s r ay a y . 1 T x - y ' 2 ‘ z 1 T y T 2 and thu s : ( h) 1 y y (z ' z ' T y ) ( xi ’ y t g z l i whe r e t he subs c r ip t s i ndi cat e c omp o ne nt s o f t he v e c t o r F o r a f ix e d value o f fac e Fi g 8 g iv e n by e quat io ns ( h) ar e t h e o nt o t he pl ane n ' , mapp i ng g iv en by z = ~ o f th e sur - c o ns t ( s e e F rom th e s e e quat i on s w e c an c omput e th e J ac ob i an o f th i s . fo rmat i o n (5) . z ' 2 T , nam el y , " -l ! ) 3 8 e 8 y x x ' 57 ? ax e? " -1 t rans - F ig ( T ran s fo rmat i o ns f o r T ran smi s s i o n 2 . Th e J ac o bi an wh ic h o c cur s in e qua t i o n ( 1 ) c an no w b e cal cul at e d s i nc e a a n n g l a M whe r e n “ i s a p l ane t hrou gh Ja ) g g and pa rall e l t o t he n o rmal p lan e s p r ev i ou sly d ef i ne d and th e . n, p and p no t a t i o n r ep r e s e nt s . ' ar e t he Jac o b i ans o f t he t rans f o rmat i o ns b e t we e n ind i c at e d su rfac e s de t e rmi ne d I b y me ans o f t he r e fl e c t e d or t r an sm i t t e d r ay s J . P s inc e th e p l ane s ar e par al l el by p a i rs an d t hu s c o r r e sp ondi n g i n de f in i ng th e t rans f o rmat i ons are e qual J( L p N ow t he z - az the x- is and T I ) I Thu s w e ha v e : 8 . .. p l ac e t he o r i g i n o f c o or di na t e s at t h e p o i nt no rmal t o S and p o s i t iv e . Th e p l ane t ang e nt pl ane t o S a t t h e p e nde d i nt o a . Tay l o r . nd ‘ ne w int o t he f i r s t wi th Furt he r le t 9 - e xe s b e p arall e l t o th e di re c t i o ns o f p ri nc ipal curv atur e y a t th i s p o i nt (6) u . ang l e s us e d n ow b e c ome s the o rig i n . xy p me dium . l ane ( z =O ) and i s The e quat i o n o f th e sur fac e s e r i e s a round t he o r ig i n b e c om e s 9 th e 5 ex- 2a whe r e and 2b ar e t h e p r inc ip al cu rv a tur e s o f t he surfac e at th e o r igin and th e p r im e s de no t e t h e c o o r dinat e s o f a sur fac e p o int r e l at iv e t o th e new c o o r di na t e sy s t em . 7 79 I n th e s e c o o rdi nat e s r e fl e c t e d o r t ran smi t t e d r ays 4 i s th e Jac o b an o f th e i o f th e sur f ac e o n t h e , JQ’ mapp i n g p l ane , by T hi s . mapp i ng i s giv e n by x = x' 2 ' t an (7 ) y an d whe r e y P ( an d e quat i on s ( 6 ) and ( 7 ) we a x' c an y e 3 ' t an k ) y b h q ' t he ang l e s b e t w e e n a ray r e fl e c t e d ( o r th e x- and y- ax e s r e sp e c t iv e ly Fr om ar e t ran s mi t t e d ) at J = a y . , comput e az ’ _ ' , 8 y e r “ ’ ' fi nd th at , at th e o ri g i n ( L a 32 ' O ) , the ab ov e Jac ob ian z y i s e qual t o o ne U s i n t hi s r e s ul t i n the p r e c e di ng expr es s i on fo r W e . g . t w e o bt ai n P wi t h t he cho s en as ab ov e w e may c al cul at e i n e quat i o n D I J ( a_ p . S 1 T}: 8 z TI (1 T T2 0 2 2 -1 iT a (f " 8 3 $ l ) 2 wh e r e t he p ar t ial de r iv at ive s po ne nt e o f th e o r i gi n ar e : by us ing e quat i o ns t h e ab ov e J ac o b i an : 1 J( , v e c t or 1 T an d a " a ) iT 8 X “ ar e 8 2 * iT y 1 T t o b e ev al ua t e d a t the or igi n . T he c om- t he i r part i al de r iv a t iv e s evaluat e d at the ( 8 ) b e c om e s p J( _ p % 2 ‘ z - cos a 2< i n « 2 ’ s D 1 1 ax 2( 2 by l 2 cos 1 n 2 2 2 1- ' 5- by f am- 1 D 1 + Lah e ul cos y . ‘ D 1 cos a ) i l L 2 n )B D 1 a1 m -1 i 2 D 1 2“ : 0( 2( 1 Z m ay C( ; 2 Th i s e quat i on 2 2. D c os l f) 2 (x i 4 W ' A 2 D E l 1 b e exp r e s s e d in t e rm s o f g e om e t r i c p rop er t i e s o f th e sur - G c ho i c e = ltab g 2) Gll 2( 2 ax i 2G n G 1 1 by t ? 2 2‘ th e di s tan c e s inv o lv e d ar e 2 s 1 !- a y l 2 l , al r e a dy z Y ‘ 1 s in 2 2 e D 1 D 1 s in D 1 13 and )2 2 fac e an d di s t an c e s whi ch ar e indep e nde nt o f th e 9 Th e s e quant i t i e s ar e (1 m e( i - l 2 g iv e n ‘ f , and of c o or dinat e s . G an d G ar e r e sp e c t iv e ly t he m ean m u g o f t he ature Gl l i s th e cu r vatur e o f u rfac e at th e p o int i nv o lv e d ; s in a p lan e c on t ai ni ng t he inc i de nt r ay thi s p o i nt ; D1 t he su rf ac e , and t he Gau s s i an an d c rv i s the di s t an c e al o n an d urvatur e t he sur fac e t he no rma l t o th e su rf ac e at t he i nc i de nt g c fr om t he s ourc e t o r ay D i s t he di s tanc e al o ng a r e fl e c t e d o r t r an smi t t e d r am fr om th e sur f ac e t o any p o int on t hi s r ay I n t e rm s o f t h e s e r . i nvar i an t s e quat i o n ( l l ) b e c ome s “ E 1 1 . P l D ' COS 9 2 v ( 29 ' c os 2 0 4 G31 tan m 2 0 < ) ( i i l u cos fi ‘ i- c os (X i ( I n) 2 D 2 n O 2 D l ( 2Gm c os z G11 4 ' r c os cos g wi t h t h e o r igi n at OS ' t an l ) G N ow 2 any ! t 4 c oe ( n un c ha ng e d l cos r ' t c o so< f inal ly l e t t he . Equat i on i n t he s e c o o r d inat e s p r ov i de d tha t i = D < x - 1 x 0 ( yl - y o ( 21 - w e (1 5 ) 2 r D ( 2c os ( If- 3' 0 2 v 2 (x i I f e qua t i on ( l l-L) i s us e d i n e quat i o n ( 1 ) the re fl e c t e d or transm i t t e d f i e l d amp l i tu de i s giv en by : (1 6) D 1 p o int i n s pac e , l e t t h e s our c e be at i n th e new c o or di na t e s 2 ) i n d l e t a p o int o n t h e sur f ac e b e ob s e rv at i o n p o int b e 1 is 1 0 s i nc e w e c an exp r e s s ( h) 1 and y i n t e rm s o f z ' , y ‘ and 2 by I n e quat i o n ( 1 6 ) J i s a func t i o na l symb o l f o r th e . m e ans o f e quat i ons e xp r e s s i on . on t he r i ght s i de o f e quat i o n ( 1 h) w i t h t he chang e s no t e d in M . S o lut i o n D i s cus s i on o f t he " l ev e l I t i s o f int e r e s t t o inv e s t i gat e the sur f a c e s B , tha t i s sur fac e s o n wh i ch a r e f l e c t e d o r t r an s mi t t e d f i e l d c ompone n t has a co ns t ant val ue T o f ind such . su r fac e s w e r e qui r e that c o ast Ea W in e qu at i o n (1 e th en s olv e th e r e sul t i ng e qua t i o n f or D an d o b tai n : m a n 7) K wh e r e H ( i h) Eq ua t i on s . an d . n am e ar e th e c o e ffi c i e nt s o f D and D do ub l x' an d y ' . e s ign i n e qua t i o n ( 1 and ar e o f spe c i al imp o r t anc e E p- i ch ; r e s p e c t iv ely i n e quat i on F o r e a ch v alu e o f . 7) Th o s e l ev e l sur fac e s o n whi ch l e t t i ng e ) ar e e quat i on s f o r the l ev e l sur fac e s i n ( h) and ( 1 7 o f t he p arame t e r s fac e s a s t he . . E B“ t t her e ar e tw o such in di c at e s e rms s ur - . i s i n f ini t e ar e c al l e d caus t i c s Th e i r e quat i on s a r e e as ily o bt ai n ed by i n th e e qu at i on s f o r th e l ev e l sur fac e s . T he di s t anc e from a c au s t ic t o the sur fac e along a r e fl e c t e d o r t ran smi t t e d ray i s us e ful (1 . T hi s di s t anc e i s giv e n by ( 1 H 8) t hu s e ach r e fl e c t e d or t ransm i t t e d 7) wi th E 1 co and i s : 2 r ay i nt e r e e d s t wo c aus t i c s . T h e two p o i n t s al ong a r e f l e c t e d o r t ransm i t t e d r ay at wh i ch 00 ar e c al l e d co n j ug at e p o i nt s . I f t he c aus t i c surf ac e s int e r s e c t t h en t h e c o nj ugat e p o i nt s o n t he ray s thr ough th e int er s ec ti on r 2) Y - 0 c8 , then n; 2 2 G and t he p o int o f t ran sm i s s i on m g i s an umb il i c al p o int From e quat i on ( 1 8 ) t h e di s tanc e . i s g iv e n by 1 ‘1 D D 1 I n al l o f the ab ov e ca s e s th e d i s t anc e t o th e imag e i s exp re s s e d by the ge ne ral fo rmul a ( 20 SI ) 1 ’ ( l -l ) 1 ] n e / ogl I f th e sour c e i s a t an inf i n— whe r e t h e s ign t o b e ch o s en i s tha t o f G i t e d i s t anc e fr om th e re fl ec t ing o r t rans m i t t i n g sur fac e , th e dis t anc e of a r e sul t i ng p o int image ( whi ch i s c al l e d a fo c al p o i nt ) fr om the sur fac e i s cal l e d th e f o c al l e n t h f , and i s gi ven by e qua t i o n ( 20 ) wi th g 1 ( 21 ) , i 1 _ g ] n D = <n l , — c g From e quat i on s ( 20 ) an d ( 21 ) w e ob t a in th e c omb in e d l ens and mi rr o r law : ( 22 ) 1 ano t he r app l i c at i o n As to a sp he re by van de r . Th e n Po l fr om t h e ear th a c c oun t , t hei r an d . . W , we sp ec ial i z e the re fl e c t ing sur fac e e q ua t i o n ( 1 H) y i e l ds the g e o me t r i cal fa c t o r ob tai ne d B r e mm e r or , 1 % t he r e fl e c t i o n o f an e l e c t ro magne t i c wav e h e n t he Fre s ne l f o rmul a e an d t he pha s e ar e t ake n int o c omp l e t e r e sul t ( f o r wav e l engths smal l c ompar e d t o t he ear th ' s ra di u s ) i s o b t ai ned . APPE NDI X To der iv e e qua t i o n ( 2 ) o f t h e t ex t p r op e r v e c t o r s an d angl e s s h own in F ig v e c t o r s and angl e s we 1 . we us e ' the un it From t h e de f i ni t i ons o f t h e s e . r e q ui r e : 2 3 4 N 2 1 : 2 3 l (1 ) By th e l aw o f re fl e c t i on an d fr om S ne l l ‘ s l aw n ( 3) N 2 l n !l 4 wh e r e w e al way s t a ke t he p o s i t iv e s quar e r o o t i n Eq . ( 33 . S i nc e th e re- fl e e t e d o r t rans m i t t e d ray mus t l i e i n t he p lane o f t he no rmal t o the surfac e an d the i nc i de nt r ay ( by t h e l aw o f r e f l e c t i o n and Sn e ll ' s law ) we hav e e A l B l -1 A and = 2 I < o N) l 13 1 = +1 = =o The s e c o nd s e t of c o e ff i c i en t s r ep r o duc e s t he i nc i dent ray an d s o mus t b e di s c ar de d (5) . Then t h e m os t gen er al " 17 3 T v ec t o r i s g iv e n by : M. I f e qua t i o n ( M) i s u s e d in e quat i o n s ( 1 ) an d ( 3) : - 2 B g e an d n n( Y 1 . i r we = n a _n I ( B The s e c o n d s e t o f c o e f f i c i en t s y i e l d a t r ans mi t t e d s am e s i de o f t he n ormal a s th e inc i dent ray di ct i o n t o th e U s ing l aw o f r e frac t i on and ge t th e s o lut i ons o r ay H ow ev e r , . (6) = n1 - (f + o is th i s i s in co nt r a- s o t hi s s o lu t i on mus t b e ab andone d t h e f ir s t s e t o f c o e ff i c i en t s g iv e s t h e g e ne ral aI whi c h l i e s on t he 2 . ’ T ve c t o r a s : - E q ua t i on s ( 5 ) and ( 6 ) c an now b e wr i t t e n i n t h e c omb ined fo rm : a T - (n p p . 9 1 m I whi ch i s th e de s i r e d e q ua t i on . g“ « f ( ) Thi s c an al s o b e e xp re s s e d by th e s impl e . (8) A H e xp r e s s i on : -n 9 (n co s Y ' t- c os o< Kell er D e t e rm i na t i o n o f re fl e c ted 8 ’ s H u A UTHO R O D e t e rm i n a t i o n O H V 3 3 W S 1 1 L E m B ' o f e c ted re f l T IT L E e u p a x n o a p u p d e l N " n m a a m a m g m 5 9 m 2 3 19 Y U . M Institute . athe m atical 4W a shingto n Plac e N e w Y o rk 3, N . Y . of
© Copyright 2026 Paperzz