Triple Integrals Triple Integrals Triple integrals over a box: E ( x, y, z ) a x b, c y d , r z s b d s f ( x, y, z )dV a c r E f ( x, y, z )dzdydz By Fubini’s Theorem we can change the order of integration in six possible ways. Applications: 1. 1dV is the volume of the solid E. E 2. If 𝑓(𝑥, 𝑦, 𝑧) is the mass density of the solid E (e.g. in kg/m3), then f ( x, y, z )dV is the total mass of the solid (in kg.) E Triple integrals y 2 xe sin zdV where E is the solid defined by Example: Evaluate E E ( x, y , z ) 1 x 2, 0 y 1, 0 z 2 1 2 1 y 2 xe sin zdV 2 xe sin zdzdydx 2 xe [ cos z ] 0 dydx y y E 1 0 0 2 1 2 xe 1 0 1 0 2 1 y cos cos 0 dydx 4 xe 1 0 2 y dydx 4 x[e y ]10 dx 1 x 4( e 1) 2 1 6( e 1) 4( e 1) xdx 4( e 1) 2 1 2 1 2 2 2 By Fubini’s Theorem we can change the order of integration: 2 1 2 xe sin zdV 2 xe sin zdydzdx y E y 1 0 0 2 1 y 2 xe sin zdV 2 xe sin zdydxdz y E 0 1 0 1 2 y y 2 xe sin zdV 2 xe sin zdxdydz E 0 0 1 1 2 y 2 xe sin zdV 2 xe sin zdxdzdy y E 0 0 1 1 2 y y 2 xe sin zdV 2 xe sin zdzdxdy E 0 1 0 All these integrals give the same result. Triple Integrals Type 1 Triple integrals over more general regions: There are six different orders of integration possible in a triple iterated integral. Type 1: Let D be the projection of the solid on the xy-plane and let 𝑧 = 𝑢1 (𝑥, 𝑦) and 𝑧 = 𝑢2 (𝑥, 𝑦) be the surfaces forming the “bottom” and the “top” of the solid respectively. u2 ( x , y ) f ( x, y, z )dV u ( x, y ) V D f ( x, y, z )dzdA 1 There are two different orders of integration on D. For instance, as a type I region we obtain the integral: b g2 ( x ) u2 ( x , y ) f ( x, y, z )dV a g ( x ) u ( x , y ) V 1 1 f ( x, y, z )dzdydx Triple Integrals Type 2 Let D be the projection of the solid on the yz-plane and let 𝑥 = 𝑢1 (𝑦, 𝑧) and 𝑥 = 𝑢2 (𝑦, 𝑧) be the surfaces forming the “back” and “front” of the solid. u2 ( y , z ) f ( x, y, z )dV u ( y ,z ) V D f ( x, y, z )dxdA 1 There are two different orders of integration on D. For instance, as a type I region we obtain the integral: b g2 ( y ) u2 ( y , z ) f ( x, y, z )dV a g ( y ) u ( y , z ) V 1 1 f ( x, y, z )dxdzdy Triple Integrals Type 3 Let D be the projection of the solid on the xz-plane and let 𝑦 = 𝑢1 (𝑥, 𝑧) and 𝑦 = 𝑢2 (𝑥, 𝑧) be the surfaces forming the “left” and “right” sides of the solid. u2 ( x , z ) f ( x, y, z )dV u ( x,z ) V D f ( x, y, z )dydA 1 There are two different orders of integration on D. For instance, as a type I region we obtain the integral: b g2 ( x ) u2 ( x , z ) f ( x, y, z )dV a g ( x ) u ( x , z ) V 1 f ( x, y, z )dydzdx 1 Remarks: 1. The limits of integration for the middle integral can involve only the outmost variable of integration. 2. The outside limits must be constant. Triple Integrals Example 1 Evaluate E xdV planes and where E is the tetrahedron bounded by the coordinate x y z 1 2 3 4 x y z 4 1 The solid is bounded below by 𝑧 = 0 and above by 2 3 Let D be the projection of the tetrahedron on the xy-plane. 41 x y 2 3 x D 0 E xdV 2 x x y 31 41 2 2 3 0 0 x y 41 2 3 0 dzdA 0 2 0 The arrow enters and exits the solid at the limit of integration for z x 31 2 0 xz x dzdydx dydx 0 x 3 1 2 0 x y 4 x 1 dydx 2 3 x 3 1 2 x y2 4 x y 1 0 2 6 0 2 dx x 2 9 x 2 4 x 3 1 1 dx 0 2 6 2 2 2 x 6 x 1 dx 2 0 2 2 D 2 Triple Integrals Example 2 Use a triple integral to find the volume of the solid bounded by the paraboloid 𝑥 = 4𝑦 2 + 4𝑧 2 and the plane x = 4. A line parallel to the x-axis intersects the solid at 𝑥 = 4𝑦 2 + 4𝑧 2 and at x = 4. These are the limits of integration for x. 𝒙𝟐 + 𝒛𝟐 = 𝟏 Let D be the projection of the solid in the yz-plane. The surfaces 𝑥 = 4𝑦 2 + 4𝑧 2 and x = 4 intersect on a curve C: 4y2 + 4z2 = 4 → y2 + z2 = 1 The circle is the boundary of the region D: 1 y2 z 1 y2 V dV D 4 y 2 4 z 2 E 1 4 1 y 2 4 1 1 y 2 4 y 2 4 z 2 polar coordinates: 1 y 2 1 1 y dxdA 1 (4 4( y z ))dzdy 2 2 2 1 2 0 0 1 y 1 dxdzdy 1 (4 4r )rd dr 8 ( r r 3 )dr 2 2 0 Triple Integrals - Example 3 Let E be the solid bounded by 𝑧 = 0, 𝑧 = 𝑦 and 𝑦 = 9 − 𝑥 2 . Express a. f ( x, y, z )dV in the form: E f ( x, y, z )dzdydx E Limits for z: 0 ≤ 𝑧 ≤ 𝑦 Let D be the projection of the solid on the 𝑥𝑦-plane. y f ( x, y, z )dzdydx 0 E D 3 f ( x, y, z )dzdA 9 x 2 3 0 y 0 f ( x, y, z )dzdydx Triple Integrals - Example 3 continued b. f ( x, y, z )dydzdx E A line parallel to the y-axis intersects the solid on the surface 𝑦 = 𝑧 (left surface) and on the surface 𝑦 = 9 − 𝑥 2 (right surface). These are the limits of integration for the y-variable. Let D be the projection of the solid on the 𝑥𝑧-plane. The arrow enters and exits 9 x 2 f ( x, y, z )dydzdx z E D the solid at the limit of integration for y f ( x, y, z )dydA The surfaces z = y and y = 9 − x2 intersect in a curve C. The projection of this curve on the xz plane has equation z = 9 – x2 and it is the boundary of the domain D 9 x 2 D z f ( x, y, z )dydA 3 9 x 2 9 x 2 3 0 z f ( x, y, z )dydzdx Triple Integrals - Example 3 continued c. f ( x, y, z )dxdzdy E A line parallel to the x-axis intersects the solid on the surface 𝑥 = − 9 − 𝑦 (back surface) and on the surface 𝑥 = 9 − 𝑦 (front surface). These are the limits of integration for the x-variable. Let D be the projection of the solid on the 𝑦𝑧-plane. 9 y f ( x, y, z )dxdydz f ( x, y, z )dxdA 9 y E D 9 y 0 0 9 y f ( x, y, z )dxdzdy 9 y y The arrow enters and exits the solid at the limit of integration for x
© Copyright 2026 Paperzz