Carbon balance in a heterogeneous cutover bog in the Jura Mountains. Estelle Bortoluzzi, Daniel Epron, Daniel Gilbert, Alexandre Buttler WP 02: Carbon sequestration by peatland vegetation Objectives 1. Identify and compare the vegetation communities colonizing abandoned cutover mire sites 2. Determine effects of key plant species used in peat restoration on carbon sequestration 3. Determine net primary production and biomass accumulation 4. Estimate net ecosystem productivity from seasonal determinations of photosynthesis and respiration in a transparent enclosure WP 02: Carbon sequestration by peatland vegetation Milestones: M3: Site selection for survey and setting up of field experiment M4: Survey of vegetation in cut-over sites and production measurements M5: Rates of photosynthesis and respiration in cut-over sites (year1) and experiment (year 2-3) M6: Biomass accumulation and growth biometry of keystone species in experiment (years 2-3) WP 02: Carbon sequestration by peatland vegetation Deliverables: D5: Identification of key plant species successfully occupying abandoned sites and their potential for restoring peat accumulation D6: Rates of carbon return from key species used in the restoration of cut-over sites D7: Rates of C fixation on an area basis, evaluation of carbon sequestration through net primary production, estimation of hourly, daily and yearly net ecosystem productivity => Estelle thesis on June 15th => Manuscript under revision in New Phytologist WP 02: Carbon sequestration by peatland vegetation Carbon sequestration EEN PPN PG - RA - RH - FCH4 CO2 CO2 CO2 CO2 TOC RE CH4 Measurements • A two year survey • Open through flow transparent chamber (Ciras 1, PPSystems) for CO2 fluxes • Closed darkened chambers for CH4 accumulation (micro-GC CP 4900, Varian) • 11 collars on three vegetation types: bare peat, recent regeneration (Eriophorum) and advanced regeneration (Sphagnum) • Environmental variables (air and peat temperature, global radiation and photosynthetic photon flux density, rainfall, water table level …) •Biotic variables (Leaf Area Index, bryophyte density, dessication index) => Vegetation Index (VI) (0 to 1): DI IF BI * DImax VI IFmax BImax Ecosystem respiration 10 RE (µmolCO2 m-2 s-1) Bare Peat Recent Advanced 8 6 4 2 0 0 90 180 270 360 450 540 630 720 Days of years 2004 and 2005 Air temperature, main determinant of RE RE (µmolCO2 m-2 s-1) Bare peat Recent R. Advanced R. TA Tmin b RE * Trèf Tmin TA (°C) Residuals of RE related to water table on bare peat Residuals of RE (µmolCO2 m-2 s-1) Bare Peat WT (level of water table) (m) WT RE a * c * WTrèf b TA Tmin Trèf Tmin Residuals of RE related to vegetation index Residuals of RE (µmolCO2 m-2 s-1) Recent Advanced VI (relative unit) TA Tmin b WT RE d * e * VI * WTrèf Trèf Tmin Predicted RE RE predicted (µmolCO2 m-2 s-1) Bare peat Recent Advanced RE measured (µmolCO2 m-2 s-1) Net ecosystem exchange under saturating irradiance EENsat (µmolCO2 m-2 s-1) 10 Recent Advanced 8 6 4 2 0 -2 0 90 180 270 360 450 540 630 720 Days of years 2004 and 2005 Gross photosynthesis under saturating irradiance PBsat(µmol CO2 m-2 s-1) 14 Recent Advanced 12 10 8 6 4 2 0 0 90 180 270 360 450 540 630 Days of years 2004 and 2005 PBsat = EENsat + RE 720 Air temperature, main determinant of PBsat PBsat(µmol CO2 m-2 s-1) Recent Advanced TA (°C) TA g h PBsat * e 2 Residuals of PBsat related to vegetation index Residual of PBsat(µmolCO2 m-2 s-1) Recent Advanced TA g h PBsat f * VI * e VI (relative unit) 2 Predicted EENsat TA g b WT T A T min h d * EENsat f * VI * e e * VI * WTrèf Trèf Tmin 2 EENsat predicted (µmolCO2 m-2 s-1) Recent Advanced EENsat measured (µmolCO2 m-2 s-1) Light response curves of EEN EEN (µmolCO2 m-2 s-1) 8 6 4 2 Advanced collar 5, j596 0 -2 -4 -6 0 500 1000 1500 2000 PPFD (µmol/m2/s) i * PPFD * PBsat EE N RE PBsat i * PPFD Predicted EEN EEN predicted (µmolCO2 m-2 s-1) Récent Advanced EEN measured (µmolCO2 m-2 s-1) CH4 efflux FCH4 (nmole m-2 s-1) 70 Bare peat Recent Advanced 60 50 40 30 20 10 0 0 90 180 270 360 450 540 630 Days of years 2004 and 2005 720 CH4 efflux related to water table on bare peat FCH4 (nmol m-2 s-1) 6 Bare peat FCH4 j * WT 5 4 3 2 1 0 -0.15 -0.1 -0.05 0 WT (m ) CH4 efflux related to leaf area index of vasculars FCH4 (nmol m-2 s-1) Recent Advanced 80 FCH4 k * IF 60 40 20 0 0 0.2 0.4 0.6 0.8 LAI (m2 m-2 ) 1 Simulation: Knowing: 1. Half a hour global radiation and it conversion factor to photon flux density 2. Half a hour air and peat temperature 3. Seasonal variation of water table 4. Seasonal variation of leaf area index, bryophyte density and moss dessication index => Rates of net ecosystem productivity and methane efflux can be estimated at hourly, daily and yearly on an area basis and use to evaluate of carbon sequestration Daily fluxes -2 d-1) F ( g m CO2 C 6 PB Recent PB and RE Recent EN Advanced PB and RE Advanced EN 5 4 3 2 1 0 -1 RE -2 Bare peat EEN -3 -4 0 90 180 270 360 450 540 630 720 Days of years 2004 and 2005 Annual carbon balance (gC m-2 y-1) 2004 PB Bare peat 0.23 Recent 197 ~ 306 Advanced 284 ~ 474 RE FCH4 Bilan 2005 -22 -0.4 -22 Bare peat -121~ -207 -1.5 ~ -2.8 67 ~ 118 Recent -186 ~ -297 -0.7 ~ -2.3 93 ~ 175 Advanced PB RE FCH4 -19 ~ -31 -0.2 ~ -0.6 279 ~ 379 -199 ~ -214 -1.8 ~ -3.9 359 ~ 525 -233 ~ -340 -0.5 ~ -2.7 Bilan -19 ~ -32 78 ~ 166 122 ~ 183 Conclusions : 1. Bare peat is a weak carbon source and vegetated areas are strong carbon sinks 2. Net carbon exchange slightly higher for advanced than for recent regeneration 3. High variability among collars within a given stage of regeneration 4. Higher sensitivity to summer drought in Sphagnum covered plots (advanced regeneration) 5. Higher methane efflux in vascular covered plots ( recent regeneration) Perspective : Site comparison, meta analysis … C balance (gC m-2 y-1) Auteurs Country Type Method Aurela et al., (2004) Finland Minerotrophic Eddy flux 22 Alm et al., (1997) Finland Ombrotrophic Chamber 73 Lafleur et al., (2001) Canada Ombrotrophic Eddy flux 68 Lafleur et al., (2003) Canada Ombrotrophic Eddy flux 71 Lafleur et al., (2003) Canada Ombrotrophic Eddy flux 9 Alm et al., (1999) Finland Ombrotrophic, very dry year Chamber -90 Waddington et al., (2002) Quebec Ombrotrophic, after cutting Chamber -88 ~ -112 This study Le Russey Bare peat Recent Advanced Chambers -19 ~ -32 67 ~ 166 93 ~ 183
© Copyright 2026 Paperzz