MAT 3237 Differential Equations Section 4.2 The Inverse Transforms and the Transform of Derivatives http://myhome.spu.edu/lauw Preview Inverse Transform Transform of Derivatives Solve IVP A Tale of Two Worlds L f (t ) F (s ) D.E.( I .V .P.) Algebraic Equation Solution t world L 1 Solution s world Theorem 4.1 f (t ) 1 t n e at f (t ) F (s) 1 sin kt s n! n 1 cos kt s n 1,2,3,... 1 sa F (s) k s2 k 2 s s2 k 2 Inverse Transform If L f (t ) F ( s), then f (t ) L F ( s) 1 Inverse Transform If L f (t ) F ( s), then f (t ) L F ( s) 1 L 1 is also linear L 1 aF ( s) bG ( s) aL F ( s) bL G (s) 1 1 Example 0 L 1 2 3 s L1 aF (s) bG(s) a L1 F (s) b L1 G(s) f (t ) 1 t n e at F (s) f (t ) 1 sin kt s n! cos kt s n 1 n 1,2,3,... 1 sa F (s) k s2 k 2 s s2 k 2 Example 1 L 1 1 3 s L1 aF (s) bG(s) a L1 F (s) b L1 G(s) f (t ) 1 t n e at F (s) f (t ) 1 sin kt s n! cos kt s n 1 n 1,2,3,... 1 sa F (s) k s2 k 2 s s2 k 2 Example 2 L 1 2 s 2 f (t ) 1 t n e at F (s) f (t ) 1 sin kt s n! cos kt s n 1 n 1,2,3,... 1 sa F (s) k s2 k 2 s s2 k 2 Example 3 L 1 2 2 s 9 f (t ) 1 t n e at F (s) f (t ) 1 sin kt s n! cos kt s n 1 n 1,2,3,... 1 sa F (s) k s2 k 2 s s2 k 2 Transform of Derivatives Use integration by parts, we can get the following formula: f (t ) sL f (t ) f (0) L f (t ) s 2 L f (t ) sf (0) f (0) L OR L y(t ) sY ( s ) y (0) L y(t ) s 2Y ( s ) sy (0) y (0) Theoretical Background Laplace transforms do not exist for all functions If 𝑓(𝑡) satisfy certain “nice conditions”, its Laplace transform exists (Theorem 4.2) Under the same “nice conditions”, lim b f b e sb 0 L f (t ) sL f (t ) f (0) f (t ) L e st f (t )dt 0 b lim e st f (t )dt b dv 0 lim b u du v Example 5 4t Solve y 3 y 2 y e ; y(0) 1, y(0) 5 L y(t ) sY ( s ) y (0) L y(t ) s 2Y ( s ) sy (0) y (0) Example 5 4t Solve y 3 y 2 y e ; y(0) 1, y(0) 5 To Save time,.... s 2 6s 9 16 1 25 1 1 1 ( s 1)( s 2)( s 4) 5 s 1 6 s 2 30 s 4 Special Rules of Partial Fractions Partial Fractions of the following form are very common P( s ) , a, b 0, a b, deg( P) 4 2 2 ( s a)( s b) Normally, we use P( s ) As B Cs D 2 2 2 2 ( s a)( s b) s a s b Special Rules of Partial Fractions In order to reduce the complexity, we can use the following rules: h ks B D 2 2 2 2 ( s a )( s b) s a s b 2 hs ks As Cs 2 2 2 2 ( s a )( s b) s a s b 3 Why? Special Rules of Partial Fractions h ks 2 As B Cs D 2 2 2 2 ( s a)( s b) s a s b As B s 2 b Cs D s 2 a ( s 2 a)( s 2 b) h ks 2 As B s 2 b Cs D s 2 a A C s 3 ( B D) s 2 Ab Ca s Bb Da AC 0 Compare coefficients, we get Ab Ca 0 Sub. C A into Ab Ca 0, we get A b a 0 Example 6 s2 1 ( s 2 1)( s 2 4) Next 4.3.1
© Copyright 2025 Paperzz