Homework Chapter 5 Due 3/23/09 Solutions 1. Problem 5.19(a), (d). U1 Z Y X 1 2 3 A B C VCC 6 4 5 G1 G2A G2B Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7 15 14 13 12 11 10 9 7 U5A 1 2 13 12 F(X ,Y,Z) = sum(2,4,7) 74LS10 74LS138 5.19(a) 2. Problem 5.82 U2A 1 3 F1 2 74LS00 U3A 1 3 F2 3 F3 3 F4 2 U1 Z Y X 1 2 3 A B C VCC 6 4 5 G1 G2A G2B Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7 15 14 13 12 11 10 9 7 74LS00 U4A 1 2 74LS00 74LS138 U5A 1 2 74LS00 3. Design an adder circuit with inputs X1, X0, Y1, Y0 and Cin, and outputs Cout, S1, and S0. To design the circuit, simply write equations for Cout, S1, and S0 as minimal sum of products. You do not have to draw the circuit. The first few terms of the truth table are shown below. Cin X1 X0 Y1 Y0 0 0 0 0 0 0 1 0 0 0 0 1 2 0 0 0 1 0 3 0 0 0 1 1 4 0 0 1 0 0 5 0 0 1 0 1 6 0 0 1 1 0 7 0 0 1 1 1 8 0 1 0 0 0 9 0 1 0 0 1 10 0 1 0 1 0 11 0 1 0 1 1 12 0 1 1 0 0 13 0 1 1 0 1 14 0 1 1 1 0 15 0 1 1 1 1 16 1 0 0 0 0 17 1 0 0 0 1 18 1 0 0 1 0 19 1 0 0 1 1 20 1 0 1 0 0 21 1 0 1 0 1 22 1 0 1 1 0 23 1 0 1 1 1 24 1 1 0 0 0 25 1 1 0 0 1 26 1 1 0 1 0 27 1 1 0 1 1 28 1 1 1 0 0 29 1 1 1 0 1 30 1 1 1 1 0 31 1 1 1 1 1 You should use the maps shown below for this design Cout 0 0 0 0 0 0 0 1 0 0 1 1 0 1 1 1 0 0 0 1 0 0 1 1 0 1 1 1 1 1 1 1 S1 0 0 1 1 0 1 1 0 1 1 0 0 1 0 0 1 0 1 1 0 1 1 0 0 1 0 0 1 0 0 1 1 S0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1 1 0 1 0 0 1 0 1 Cout(Cin,X1,X0,Y1,Y0) = (7,10,11,13,14,15,19,22,23,25,26,27,28,29,30,31) S1(Cin,X1,X2,Y1,Y0) = (2,3,5,6,8,9,12,15,17,18,20,21,24,27,30,31) S0(Cin,X1,X2,Y1,Y0) = (1,3,4,6,9,11,12,14,16,18,21,23,24,26,29,31) Cin = 0 Cin = 1 Cout X1 X1 1 1 1 1 Y0 Y0 1 1 1 1 1 1 1 Y1 Y1 1 1 1 1 1 X0 X0 Cout X1Y1 CinX 0Y1 CinX1X 0 CinX1Y 0 X 0Y1Y 0 X 0 X1Y 0 Cin = 0 X1 1 1 1 1 Y0 1 1 Y1 1 1 X0 Cin = 1 S1 X1 1 1 1 1 Y0 1 1 Y1 1 1 X0 S1 X 1 X 0Y1Y 0 X 1X 0 Y1Y 0 X 1X 0Y1Y 0 X 1X 0Y 1Y 0 CinY1X 1 X 0 CinY1Y 0 X 1 Cin Y1X 1X 0 Cin Y1Y 0X 1 Cin X 1X 0Y1 Cin X 1Y1Y 0 CinX 1X 0Y1 CinX 1Y1Y 0 Cin = 0 X1 1 1 1 1 Y0 1 1 Y1 1 1 X0 S 0 Cin X 0 Y 0 Cin = 1 S0 X1 1 1 1 1 Y0 1 1 Y1 1 1 X0 4. Draw the diagram to show how to realize the functions F(W,X,Y) = (1,3,5,6) and G(W,X,Y) = (2,3,4,7) using only a single 74LS138 and two NAND gates. U1 Y X W 1 2 3 A B C Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7 VCC 6 4 5 G1 G2A G2B 15 14 13 12 11 10 9 7 1 2 U2A 6 F(W,X,Y) = sum(1,3,5,6) 6 G(W,X,Y) = sum(2,3,4,7) 4 5 74LS20 74LS138 1 2 U3A 4 5 74LS20 5. Draw the diagram to show how to realize the functions F(A,B,C,D) = (2,4,6,14) using only one 74LS138 and one NAND gates. (5.19 c) U1 C B A 1 2 3 A B C Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7 VCC 6 4 5 D G1 G2A G2B 15 14 13 12 11 10 9 7 1 2 U6A 6F(A ,B,C,D) = sum(2,4,6,14) 4 5 74LS20 74LS138 5.19(c) 6. Draw the diagram to show how to realize the functions F(A,B,C) = (0,4,6) and G(C,D,E) = (1,2) using only a single 74LS139 IC and two NAND gates. (5.19 f) U3A B A 2 3 C 1 A B G U6A Y0 Y1 Y2 Y3 4 5 6 7 1 2 13 12 F(A,B ,C) = sum(0,4,6) 3 G(C,D,E ) = sum(1,2) 74LS10 74LS139 5.19(f) E D U4B 14 13 15 A B G 74LS139 Y0 Y1 Y2 Y3 12 11 10 9 U7A 1 2 74LS00 7. Draw the diagram to show how to realize the functions F(W,X,Y) = (3,4,5,6,7) using only a 74LS151. One possible solutions is shown: VCC U1 4 3 2 1 15 14 13 12 Y X W 11 10 9 7 D0 D1 D2 D3 D4 D5 D6 D7 W Y 6 5 F(W,X,Y ) = sum(0,1,2) A B C G 74LS151 8. Draw the diagram to show how to realize the functions F(A,B,C,D) = (2,4,6,14) using only a 74LS151. Two solutions are shown. VCC U1 /D /D /D /D C B A 4 3 2 1 15 14 13 12 11 10 9 7 D0 D1 D2 D3 D4 D5 D6 D7 A B C G 74LS151 U1 W Y 6 5 F(A ,B,C,D) = sum(2,4,6,14) /A /A D C B 4 3 2 1 15 14 13 12 11 10 9 7 D0 D1 D2 D3 D4 D5 D6 D7 W Y 6 5 F(A ,B,C,D) = sum(2,4,6,14) A B C G 74LS151 Note: You can place a symbol on an OrCAD schematic, select that symbol, copy it to the clipboard, and then past it into a Microsoft Word document, which can be printed out. This will keep you from having to draw everything by hand.
© Copyright 2025 Paperzz