SUPPLEMENTARY MATERIALS Table S1 - Specifications of the flux components for the two set of modeled CO2 concentrations used in the study. Underlying flux component PCTM/GEOS4-CASA modeled CO2 concentrations IFS-ORCHIDEE modeled CO2 concentrations Biospheric CASA GFEDv2 (Randerson et al. [1997]) ORCHIDEE (Krinner et al. [2005]) Oceanic Air-sea CO2 exchange described by monthly mean climatology (Takahashi et al. [2002]) Air-sea CO2 exchange described by monthly mean climatology (Takahashi et al. [2002]) Anthropogenic Seasonally variable global emissions modeled using a 2-harmonic Fourier series approximation (Erickson et al. [2008]) EDGAR 3.0 1 × 1 global map for 1990 (Olivier and Berdowski [2001]), rescaled to the CDIAC country level estimates for 1998 Wildfire/Biomass burning emissions Global Fire Emission Database version 2 (GFED2) (van der Werf et al. [2006]) Global Fire Emission Database version 2 (GFED2) (van der Werf et al. [2006]) Table S2- Aircraft (white) and TCCON (grey) sites used in the evaluation of the 4DVAR analysis. Note that all the aircraft sites are located over North America. Measurement site code Site name Site latitude/ longitude 40.80 N, 97.18 W Evaluation data for January 2010 Y Evaluation data for June 2010 Y BNE Beaver Crossing, Nebraska CAR Briggsdale, Colorado 40.37 N, 104.30 W Y Y CMA Cape May, New Jersey 38.83 N, 74.32 W Y Y DND Dahlen, North Dakota 48.38 N, 99.00 W - Y ESP Estevan Point, B. Columbia 49.58 N, 126.37 W Y Y ETL East trout Lake, Saskatchewan 54.35 N, 104.98 W Y Y HIL Homer, Illinois 40.07 N, 87.91 W Y Y LEF Park Falls, Wisconsin 45.95 N, 90.27 W Y Y NHA Worcester, Massachusetts 42.95 N, 70.63 W Y Y PFA Poker Flats, Alaska 65.07 N, 147.29 W Y Y SCA Charleston, South Carolina 32.77 N, 79.55 W Y Y SGP 36.80 N, 97.50 W Y Y TGC Southern Great Plains, Oklahoma Sinton, Texas 27.73 N, 96.86 W Y Y THD Trinidad Head, California 41.05 N, 124. 15 W Y Y WBI West Branch, Iowa 41.72 N, 91.35 W Y Y BIA Bialystok, Poland 53.23 N, 23.03 E Y Y BRE Bremen, Germany 53.10 N, 8.85 E Y Y DAR Darwin, Australia 12.42 S, 130.89 E Y - EUR Eureka, Canada 80.05 N, 86.42 W - - GAR Garmisch, Germany 47.48 N, 11.06 E Y Y IZA Izana, Tenerife 28.30 N, 16.50 W - Y KAR Karlsruhe, Germany 49.10 N, 8.44 E - Y LAU Lauder, New Zealand 45.04 S, 169.68 E - Y LEF Park Falls, Wisconsin 45.95 N, 90.27 W Y - NYA NY Alesund, Norway 78.92 N, 11.92 E - Y ORL Orleans, France 47.97 N, 2.11 E - Y SGP Lamont, Oklahoma 36.80 N, 97.50 W Y Y SOD Sodankyla, Finland 67.37 N, 26.63 E - Y TSU Tsukuba, japan 36.05 N, 140.12 E Y - WOL Wollongong, Australia 34.41 S, 150.88 E Y - Figure S1- Inferred CO2 correlation length (3l) and variance (2) parameters for January (A and C) and June (B and D). The covariance parameters are shown for the 15th day of the month, 1800h UTC at ~45 hPa (i.e., ~ 20.0 km). Figure S2- CO2 concentrations from the 4D-VAR analyses based on the two background error statistics –-statistics (A and B), NMC statistics (C and D), and the unconstrained model run (E and F) for January and June 2010. These plots are shown for the 15th day of the month, 1800h UTC at ~45 hPa (i.e., ~ 20.0 km). Figure S3- Column-averaged CO2 mixing ratio analysis increments based on the two background error statistics –-statistics (panel A), and NMC-based statistics (panel B), averaged over the month of June 2010. As described in Fisher [2002], within the ECMWF 4D-VAR system these analysis increments are calculated using the differences between the observations and the model background (short forecast), the observation errors and the background errors.
© Copyright 2026 Paperzz