HOMOGENIZATION OF MONTHLY TEMPERATURE SERIES IN ROMANIA (1901-2005) USING METADATA Sorin CHEVAL*, Tamás SZENTIMREY**, Ancuţa MANEA*** *National Meteorological Administration, Bucharest, Romania and Euro-Mediterranean Centre for Climate Change, Venice, Italy ** Hungarian Meteorological Service, Budapest, Hungary ***National Meteorological Administration, Bucharest, Romania Rationale: • The meteorological network suffered multiple major changes along the 20th century: transfers between different administrative or political regimes, relocations, wars, changing of instruments/shelters etc. • Previous studies approached the variability of the annual temperatures in Romania based on raw data, and paid little attention to homogenization • No homogenized climatic datasets for Romania Objectives: • To investigate the homogeneity level of the monthly temperature series recorded at weather stations from Romania in the period 1901-2005 • To test MASH • Significance of metadata Meteorological Network – Romania 2008 160 weather stations, most of them cover the interval 1961-present, cca. 90 stations automatic Data: Monthly average temperatures 1901-2005 31 stations Romania + 4 stations Hungary (homogenized) Metadata: -relocation -turning from manually operated to automatic weather stations 30.0 % 25.0 1 2 3 20.0 4 5 6 15.0 7 8 9 10.0 10 11 12 Rate of missing data / month NY DE TU SE TR TM TJ SU SB RV RS RM PT PL OC MS IS GR GL DT CT CR CP CL BZ BV BT BS BM BF BD BC AX AR 0.0 CC 5.0 Rate of missing data / dataset 2005 2001 1997 1993 1989 1985 1981 1977 1973 1969 1965 1961 1957 1953 1949 1945 1941 1937 1933 1929 1925 1921 1917 1913 1909 1905 1901 missing data/dataset 18 16 14 12 10 8 6 4 2 0 relocations or automatization 8 Temporal distribution of relocations or automatization of stations 7 6 5 4 3 2 1 0 1901 1911 1921 1931 1941 1951 1961 1971 1981 1991 2001 year CC CT SU 2005 Automatization of stations RM RS 2004 2003 BC 2002 BM BS BV CR GL AX MS OC PL GR TJ PT RV 2001 AR BT BZ CL DT IS SB TM 2000 1999 1998 1997 1996 1995 0 5 10 15 20 25 30 • The homogenization of the dataset used the Multiple Analysis of Series for Homogenization (MASH) v3.02, and took benefit of the metadata existing in the archives of the National Meteorological Administration • The MASH system can use the metadata information – in particular the probable dates of break points – automatically • Homogenized temperature series from Hungary near the border were also used during the procedure in order to increase the power. PROBLEM of HOMOGENIZATION • Basis: DATA • • • • Tools: MATHEMATICS : abstract formulation META DATA : historical, climatological information SOFTWARE : automatization • SOLUTION = MATHEMATICS + META DATA + SOFTWARE • (i) without SOFTWARE: MATHEMATICS + META DATA = THEORY WITHOUT BENEFIT • (ii) without META DATA: MATHEMATICS + SOFTWARE = GAMBLING • (iii) without MATHEMATICS: META DATA + SOFTWARE = “STONE AGE” + “BILL GATES” BASIC PRINCIPLES of MASH Procedure • • Relative homogeneity test procedure Step by step procedure: the role of series (candidate or reference series) changes step by step in the course of the procedure • Additive or cumulative model can be used depending on the climate elements • Monthly, seasonal or annual time series can be homogenized together (SAM procedure: Seasonal Application of MASH) • META DATA (probable dates of break points) can be used automatically • The actual or the final stage of the homogenization can be verified. Methodology: • Homogenized for 0.05 level of confidence • Three homogenization instances: 1. no metadata considered 2. metadata1: relocation of the stations 3. metadata2: relocation of the stations and automatization I. TEST STATISTICS FOR SERIES INHOMOGENEITY Null hypothesis: the examined series are homogeneous. Critical value (significance level 0.05): 21.73 Test statistics (TS) is compared to the critical value. The larger TS values are more suspicious! Series Index TSA Series AR 1 114.37 BC RM 24 51.86 PT BM 6 44.91 CP PL 22 33.97 BF CC 11 27.78 GL CR 14 25.14 CT TR 31 24.51 RV BZ 10 23.09 DE BS 7 19.32 NY MS 20 17.77 TJ BD 4 16.22 SU SB 27 12.99 TU AVERAGE: 31.07 Series AR PL AX RM TM BM CT DT OC SE BD SB Index TSB 1 393.26 22 164.04 2 128.02 24 87.87 30 68.43 6 54.23 15 33.94 16 25.85 21 22.27 32 19.39 4 16.53 27 13.82 AVERAGE: 72.52 Series TR BC PT TJ BZ RV BS BV DE MS IS TU Index TSA 3 23 13 5 17 15 26 34 35 29 28 33 Index 92.04 51.44 38.08 30.19 26.91 25.12 23.85 20.97 18.41 17.09 15.79 8.17 Series OC GR RS TM CL AX BV SE BT IS DT TSB 31 3 23 29 10 26 7 9 34 20 19 33 202.2 160.51 108.26 84.17 65.1 53.48 31.67 24.64 20.93 18.94 16.44 8.17 Series RS CC BF CL CP GR GL CR BT NY SU Index TSA 21 18 25 30 12 2 9 32 8 19 16 Index 25 11 5 12 13 18 17 14 8 35 28 52.33 46.2 34.89 29.71 26.88 24.86 23.76 19.36 18.4 16.44 14.62 TSB 182.79 147.64 94.98 79.31 63.13 39.98 30.28 24.21 19.48 18.41 15.79 After homogenization Before homogenization Evaluation of metadata IV. TEST STATISTICS Null hypothesis: the inhomogeneities can be explained by the Meta Data. Critical value (significance level 0.05): 21.73 Test statistics (TSM) can be compared to the critical value. The larger TSM values are more suspicious! Series Index TSM Series RS 25 182.79 BC CC 11 116.77 BF AR 1 87.28 RM CL 12 80.74 AX BZ 10 46.59 CP RV 26 33.14 TM DT 16 24.47 BM BS 7 23.35 OC GL 17 19.92 DE MS 20 18.94 NY BT 8 15.5 BD SB 27 13.36 TU AVERAGE: 51.81 Index 3 5 24 2 13 30 6 21 34 35 4 33 TSM 160.51 94.65 83.45 76.55 45.01 30.32 24.46 22.27 19.61 18.17 15.12 8.17 Series TR PL TJ PT GR CT BV CR SE IS SU Index 31 22 29 23 18 15 9 14 32 19 28 TSM 157.13 91.52 83.29 57.14 39.98 28.86 24.12 20.07 19.16 16.44 14.53 -2 -4 -6 -8 -10 -12 2005 2001 1997 1993 1989 1985 1981 1977 1973 1969 1965 1961 1957 1953 1949 1945 1941 1937 1933 1929 1925 1921 1917 1913 1909 1905 1901 8 6 Arad - January 4 2 0 No homogenization No metadata Metadata1 Metadata2 ESTIMATED BREAK POINTS AND SHIFTS AR: 1904: -0.04/ 1914: -0.02/ 1926: 0.06/ 1937: 0.01/ 1952: 0.01/ 1972: 0.08/ 1999: -0.01/ 1905: -0.08/ 1919: 0.01/ 1927: 0.12/ 1939: 0.02/ 1953: 0.03/ 1974: 0.03/ 2001: -0.03 1908: 0.09/ 1922: -0.03/ 1928: 0.07/ 1940: -0.08/ 1958: -0.01/ 1975: 0.02/ 1909: 0.15/ 1923: -0.06/ 1929: 0.02/ 1941: 0.12/ 1964: 0.03/ 1983: 0.01/ 1910: 1924: 1935: 1944: 1966: 1987: 0.13/ 0.06/ 0.04/ 0.02/ 0.01/ 0.02/ ESTIMATED BREAK POINTS AND SHIFTS (Mark M: META DATA 1) AR: 1904: -0.03/ 1905: -0.04/ 1908: 0.08/ 1909: 0.15/ 1910: 0.18/ 1921: -0.01/ 1922: -0.04/ 1923: -0.10/ 1924: 0.05/ 1926: 0.05/ 1927: 0.10/ 1928: 0.13/ M1936: 0.04/ 1940: 0.03/ M1951: 0.03/ M1972: 0.07/ 1999: -0.02/ 2001: -0.03 ESTIMATED BREAK POINTS AND SHIFTS (Mark M: META DATA 2) AR: 1904: -0.03/ 1905: -0.04/ 1908: 0.08/ 1909: 0.15/ 1910: 0.18/ 1921: -0.01/ 1922: -0.04/ 1923: -0.10/ 1924: 0.04/ 1926: 0.06/ 1927: 0.10/ 1928: 0.13/ M1936: 0.04/ 1940: 0.03/ M1951: 0.03/ M1972: 0.06/ M1999: -0.09/ 2000: 0.04 year CC CT SU 2005 RM RS 2004 2003 BC 2002 BM BS BV CR GL AX MS OC PL GR TJ PT RV 2001 AR BT BZ CL DT IS SB TM 2000 1999 1998 1997 1996 1995 0 5 10 15 20 25 30 Concluding remarks and further developments • A major part of the long-term monthly temperature variations in Romania is caused by natural factors, but in some cases the changing in the weather stations location and/or automatization have induced artificial leaps in the series • Metadata = very useful, but they cannot explain everything! • More metadata (very possible) • Efforts for series reconstruction (carefully) • Bordering problems (possible) • More methods (very possible)
© Copyright 2026 Paperzz