Lighting the future of horticulture: Energy saving and spectral manipulation Dr Phillip Davis Horticulture Technologies Event. Dublin 4th May 2017 Energy efficiency of different lighting systems HPS treatment Philips LED top light 600W Efficacy 1.92 µmol /J 190W Efficacy 2.71 µmol /J Assuming 200 µmol m-2 s-1 is required to grow a crop over a 10m2 area. Assuming 200 µmol m-2 s-1 is required to grow a crop over a 10m2 area. Number of light required =200/(600*1.92)*10 = 1.73 lamps per 10m2 Number of light required =200/(190*2.73)*10 = 3.86 lamps per 10m2 Total power of 1041W Total power 733W 30% Electrical energy saving Efficacy data from AHDB CP139 project and Philips data sheets Not all LEDs are equal Lamp HPS LED 1 LED 2 LED 3 LED 4 LED 5 Plasma Efficacy / µmol m-2 s-1 1.92 1.44 1.27 2.43 2.71 2.56 1.16 Efficacy data from AHDB CP139 project 1600 Tomato yields 1400 LED/LED + diffuse / Comp. 9 LED/LED / Comp. 10 HPS / Comp. 11 Hybrid / Comp. 12 Winter production Summer production 1200 1000 Number of fruit 30 25 800 600 Cummulative yield / kgm-2 400 20 2.4 2.4 15 2.4 200 0 3 4.2 3 3.6 3 3.6 49 50 51 52 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Week of year 10 4.8 4.8 5 4.2 0 49 50 51 52 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Week of year More light - more growth Petunia 35 days after sowing 100 µmol m-2 s-1 200 µmol m-2 s-1 280 µmol m-2 s-1 But also more cost! 360 µmol m-2 s-1 β¦but not always a better result 100 µmol m-2 s-1 200 µmol m-2 s-1 280 µmol m-2 s-1 360 µmol m-2 s-1 Pepper plants grow shorter as the light intensity increases 100 µmol m-2 s-1 200 µmol m-2 s-1 360 µmol m-2 s-1 Light controls more than just photosynthesis Movie by Prof. R Hangarter http://plantsinmotion.bio.indiana.edu/plantmotion/earlygrowth/photomorph/photomorph.html How plants sense light quality Blue Solar light responses Red UVB lightSpectrum responses response Relativeresponse orRelative Absorptanceor Absorptance 1.0 1.0 1.0 0.8 0.8 0.8 0.6 0.6 0.6 0.4 0.4 0.4 0.2 0.2 0.2 0.0 0.0 0.0 250 250 300 300 350 350 400 400 450 450 500 500 550 550 600 600 650 650 700 700 750 750 800 800 250 300 350 400 450 500 550 600 650 700 750 800 Wavelength Wavelength /// nm nm Wavelength nm Secondary metabolism 350 [Chlorophyll] (ΞΌmol m-2) 300 250 200 150 100 50 0 0 20 40 60 % Blue in spectra 80 100 Leaf morphology 100% RED 60% BLUE Red: blue effects on leaf morphology 100% red 11% blue 30% blue 60% blue Increasing blue percentage 100% blue Red: blue effects on plant height Increasing blue percentage Far-red effects on plant height FR = 0 µmol m-2 s-1 FR = 15 µmol m-2 s-1 Increasing far-red intensity FR = 30 µmol m-2 s-1 Far-red effects on plant height FR = 30 µmol m-2 s-1 FR = 15 µmol m-2 s-1 FR = 0 µmol m-2 s-1 FR = 48 µmol m-2 s-1 Far-red effects on leaf morphology How do we make use of this information? FR = 0 µmol m-2 s-1 FR = 18 µmol m-2 s-1 FR = 24 µmol m-2 s-1 Increasing far-red intensity FR = 40 µmol m-2 s-1 Modelling plant light responses 110 πΏ = πΏπ· β (π π΅ β π πΊ + π π β π πΉπ ) (2) π π π = π β 1 β π (βπ½ π ) (3) 120 π πΉπ = π β πΉπ π πΊ = π β πΊ 100 100 Leaf length / mm π π΅ = π β 1 β π π π (βπΌ ) Actual length / mm where (1) 90 80 70 60 (4) 50 y = 0.99x (5) R² = 0.8897 40 30 0 80 20 40 % blue 60 40 20 0 0 20 100 90 y = 1.0715x 40 60 Predicted length / mm 80 100 60 80 100 Effect of blue light on Tomato fresh mass 18 16 Fresh mass / g 14 12 10 8 6 4 2 0 0 20 40 % Blue 60 80 100 Effect of blue light on Tomato leaf area 350 300 Leaf area / cm2 250 200 150 100 50 0 0 20 40 % Blue 60 80 100 Leaf area strongly influences growth rate 25 Fresh mass / g We can design light treatments to 20 y = 0.0693x - 4.3965 R² = 0.8473 control morphology and influence their 15 growth rate. 10 LEDs5 can help optimise many aspects of crop production 0 0 50 100 150 200 250 2 Leaf area / cm 300 350 DL extensi pplemental Unlit Improving propagation 0% BLUE (100% RED) 9% BLUE 11% BLUE 30% BLUE Blue light stresses cuttings 60% BLUE Blue light reduces cutting survival 100 90 80 % survival 70 60 50 40 30 20 10 0 0 20 40 60 % Blue 80 100 120 But survival does not mean cuttings will root. 100 90 Clematis 80 % rooting 70 60 Iberis 50 40 Santolina 30 20 10 0 0 20 40 % blue 60 Influence of far:red on rooting Pre-treatments Supplemental Santolina Unlit Clematis data 80 Treatments T4 15%B Survival correced % rooted 70 y = -2.6822x + 59.969 R² = 0.992 60 50 40 30 20 10 0 R3 15%B +FR 0 5 10 Far-red / µmol m-2 s-1 15 20 Chrysanthemums showed no negative responses to far-red so again there are differences in sensitivity between species. Pre-treatments Benefits of lighting mother stock Supplemental lighting Supplemental No light Unlit Day length extension lighting DL extension CuttingsT1lit with0% 0% B BLUE (100% RED) Low stress T4 9%B Survival and rooting poor if preexcision lighting inappropriate Benefits of lighting mother stock Supplemental lighting No light Day length extension lighting Cutting lit with 60% BLUE High stress Survival and rooting high if pre- excision lighting appropriate even under stressed conditions Flowering time 600 No. flowers per 6 pack B β5th March 2015 FR = 18 FR = 24 FR = 40 PR11C PR12B 400 PR12C 300 200 100 0 23/02/2015 05/03/2015 15/03/2015 Date 600 Number of flowers per sixpack FR = 0 PR11B 500 500 400 300 200 100 0 0 10 20 30 Far-red intensity / µmol m-2 s-1 40 50 Pest monitoring under LED ligths Standard Yellow sticky Pest performance under LED lights Further information β’ CP125 reports available at the following link https://horticulture.ahdb.org.uk/project/understandingcrop-and-pest-responses-led-lighting-maximisehorticultural-crop-quality-and β’ CP139 report available at the following link https://horticulture.ahdb.org.uk/project/knowledgetransfer-commercial-review-lighting-systems-ukhorticulture β’ AHDB Technical Guides are available at the following link https://horticulture.ahdb.org.uk/led-principles-andpractice β’ LED4CROPS website - http://www.led4crops.co.uk/ Thanks toβ¦ β’ Dr Rhydian Beynon-Davies β’ Mr Adam Omerod β’ Dr Martin McPherson
© Copyright 2026 Paperzz