1000 Proteins Per Hour [pph] – Maximizing Protein ID From Complex Mixtures Kai Scheffler1, Eugen Damoc2, and Thomas Moehring2 Thermo Fisher Scientific, Scientific 1 Dreieich, Dreieich Germany; 2 Bremen, Bremen Germany Results: R lt The Th iincreased d sensitivity iti it and d iimproved d duty d t cycle l off the th new instrument enables a dramatic increase in the number of protein IDs with increased sequence q coverage g and high g confidence. B A EColi_noIIdet_30k_top10HCD_1#8704 RT: 55.52 AV: 1 NL: 6.11E5 T: FTMS+pNSIdFull [email protected][100.00-1420.00] 2% 30% ACN iin 60 min 2%-30% i Base Peak Chromatogram RT: 17.51 - 87.64 36.76 100 30.04 22.13 80 36.67 39.68 33.83 22.23 60 33.74 29.99 36.80 41.51 34.67 41.58 29.95 22.00 21.13 21.02 40 20 51.01 51.07 50.96 51.15 55.90 56.06 50.91 55.83 56.14 51.30 41.45 39.51 24.18 28 11 28.11 42 37 45.15 42.37 45 15 24.27 53.46 45.31 42.57 NL: 3 66E8 3.66E8 Base Peak MS EColi_noIId et 30k top2 et_30k_top2 0_CID_60mi n_1 67.72 67.62 67.82 67.51 64.99 56.19 58.79 58.97 67.89 35 40 45 50 69.72 69.78 71.11 RT: 43.825 - 43.945 76.24 77.67 78.24 84.04 81 25 81.25 84.38 Sample Preparation E. coli p protein digests g were p prepared p from a whole cell lysate y that was reduced with DTT and alkylated y with iodoacetamide followed byy digestion with a K/R K/R-specific specific protease for 16 h at 37 °C. C. 65 70 75 80 85 1 OT Full MS scan + 20x dd CID scans 43.856 NL: 5.30E7 43.909 12 3.18 sec Relative Abu undance 8 Base Peak MS EColi_noIId et_30k_top2 0_CID_60mi n 1 n_1 43.921 43.832 43 834 43.834 43 873 43.873 43.868 43.836 43.843 43.847 43 84 43.84 43 85 43.85 43 86 43.86 43 87 43.87 43.900 43.894 43 88 43.88 43 89 43.89 43.943 43.927 43.931 43.898 43.890 43.885 43.851 0 43 83 43.83 43.881 43.883 43.941 43.935 43.907 43 90 43.90 43 91 43.91 43 92 43.92 43 93 43.93 43 94 43.94 Time (min) EColi_noIIdet_30k_top20_CID_60min_1 #9130 RT: 43.86 AV: 1 NL: 5.28E7 T FTMS + p NSI F T: Full ll ms [380 [380.00-2000.00] 00 2000 00] 562.9385 z=3 100 20 413.5692 z=3 712.9092 z=2 602.3181 z=2 557.7614 z=4 z 4 457.5734 482.7711 z=2 z 2 z=3 450 500 550 600 650 600 700 1009.5458 1124.5596 800 900 1000 1100 FIGURE 5. 5 Unique proteins (A) and unique peptides (B) identified f from 1 µg and d 100 ng off E. E coli li digest di t run with ith ddTOP20 and d ddTOP10 HCD methods (<1% FDR, 2%-30% ACN in 90 min). 1256.9731 1200 1300 1400 564.7686 643.4118 244.0922 329.1811 40 724.4352 825.4767 876.4540 972.5574 759.3694 992.0388 1132.0391 416.1776 20 200 300 400 500 600 700 800 m/z 900 1000 1100 A 1366.6221 1200 1300 1400 1500 843.9044 z=2 797.3939 z=2 888.1639 z=4 943.4906 z=2 1055.5076 z=2 2 700 750 800 850 900 1009.4714 1009 4714 z=4 950 1000 1050 1100 m/z 1400 729.0183 60 40 870.4299 618.6508 235.1070 332.1048 20 1200 744.8801 207.1122 567.7501 400 926.9 69765 600 800 1929.8 98708 1222.5409 1000 m/z 1200 1400 1600 1800 806 265.9941 40 234.1442 600 460.0355 279.0970 837.4692 623.3741 392.1806 213.1157 20 738.4023 701.3510 756.3984 200 300 400 500 600 700 919 946 .4628 800 400 1347.3 73011 900 1000 1100 1200 1300 EC Cli oli_noIIde IId t_ t 30k 0kt _top10HCD D1#8 _1#8710 RT: 55 55 .54 AV V1 : 1 NL L: 2 212 .12E4 T: FTMS+pNSIdFull [email protected][100.00-1870.00] 677.3086 100 EColi_noIIdet_30k_top10HCD_1#8704 RT: 55.52 AV: 1 NL: 6.11E5 T: FTMS+pNSIdFull [email protected][100.00-1420.00] Relative A Abundance e Relative A Abundance e Relative Abundance A m/z 80 60 40 221.0916 336.1184 394.1754 528.2807 629.3283 200 300 400 500 600 792.3927 893.4396 1008.4644 700 800 m/z Relative A Abundance e EColi_n li noIIdet_ t 30k 0kto _top10HCD D1#8 _1#8713 RT: 555 5.56 AV: 1 NL: 1 116 .16E5 T: FTMS+pNSIdFull [email protected][100.00-1220.00] 408.2104 2 3 2 .13 9 8 100 900 1000 1100 1200 209.1027 1300 1400 200 300 400 20 200 815.4147 860.4276 912 122 .2214 745.4022 0 100 403.2353 300.1898 918.5521 790.3936 1438.2389 1593.8347 1679.2257 1853.9678 1024.0963 1162.3309 400 600 800 1000 m/z 1200 1400 1600 500 600 700 800 900 1046.2 62002 1000 40 20 1100 0 100 1200 200 300 400 1042.5245 817.4120 567.2697 680.3534 500 600 505.2741 CID 910.4715 175.1186 7344 4.4208 200 300 400 500 600 700 1009.5 95458 1124.5 45596 800 900 1000 1100 B 1256 569 .9731 1200 1300 1400 700 800 m/z 1143.5685 945.4672 900 m/z 1000 1100 1256 566 .6429 1200 14457 5.7957 1300 1400 1500 80 40 175.1185 591.2900 290.1455 690.3584 389.2133 520.2537 4691 9.1678 20 0 100 1600 200 300 400 500 600 924.4564 837.4249 1110.5138 965 540 .4013 700 800 900 m/z 1000 1100 6000 1224 454 .5483 1200 1400 5858 1500 5000 3000 2000 100 ng 1 µg 100 ng 0 9 10 0 CID A B Protein ID TOP20 CID, 60 min gradient CID proteins peptides proteins ≥ 2peptides Unique peptides (1 µg) C Unique proteins (1 µg) Peptide ID TOP20 CID, 60 min gradient 12000 1050 HCD FIGURE 6 6. Venn diagram comparing single ddTOP20 CID and ddTOP10 HCD runs acquired i d ffrom 1 µg and d 100 ng E. E coli li digest di t with a 90 min gradient ((2%-30% % % B)) based on proteins ((A)) and ((B)) and unique q p peptides p ((C)) and ((D)) identified. FIGURE 3. Unique proteins (A) and unique peptides (B) identified at <1% FDR from different sample amounts: a proteolytic digest of 1 µg, 100 ng, g, and 20 ng g E. coli whole cell lysate, y , analyzed y with a ddTOP20 dd O 0 CID C method et od (2%-30% ( % 30% ACN C in 60 min). ) A 1 µg 1000 10000 HCD 184 unique q p peptides p 984 1 µg CID HCD 1861 53 5775 868 9545 945 8000 844 799 686 600 6582 6000 6468 572 5339 400 4000 4224 0 100 ng B 0 20 ng 11µg 100 ng CID FIGURE 4. NanoLC-MS/MS analysis y of 1 µg E. coli digest g using g TOP10 HCD method (1x ( OT full scan + 10x ddHCD scans). ) A) Base peak chromatogram displaying the scan speed for a full scan cycle cycle. B) 10 consecutive HCD MS/MS spectra and their assigned peptide sequences sequences. C) Peptide ID from Protein Discover based on the HCD spectra displayed in B) B). Re elative Abund dance 30.47 35.47 24.32 60 26.92 24.11 52.57 52.65 45.84 47.80 67.56 54.41 35.34 92.21 91.87 94.66 88.20 68.01 58.31 58.63 61.96 58.22 74.55 71 44 71.44 76.10 Base Peak B P k MS EColi_noIId et_30k_top 10HCD 1 10HCD_1 92.11 74.17 67.90 74 32 74.32 74.41 74.07 52 73 52.73 41.88 30.19 40 45.74 41.98 30 89 30.89 30.31 67 85 67.85 67 66 67.66 50.23 45.45 94.81 79.08 79.31 83.08 17.13 17.84 97.77 106.05 106.63 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 RT: 53.376 - 53.497 1 OT Full MS scan + 10 x dd HCD scans 53.406 NL: 3.65E7 53.460 53.471 Base Peak MS EColi_noIId et_30k_top 10HCD_1 3.24 sec 300 400 500 80 147.1123 60 40 600 700 501.2730 564.7686 53.473 53.426 53.419 53.416 53.393 53.398 53.389 53.430 53.435 53.444 53 38 53.38 53 39 53.39 53 40 53.40 53 41 53.41 53 42 53.42 53 43 53.43 53.453 53.484 53.488 53 44 53.44 53.496 53.480 53.448 53 45 53.45 53 46 53.46 53 47 53.47 53 48 53.48 53 49 53.49 Time (min) EColi_noIIdet_30k_top10HCD_1 #8258 RT: 53.41 AV: 1 NL: 2.88E7 T: FTMS + p NSI F T Full ll ms [380 [380.00-2000.00] 00 2000 00] 100 554.8397 z=2 551.3011 z=? 556.3442 z=2 Relative Ab bundance 80 60 40 20 RT = 53.406 min; OT Full MS, 1e6, 30k 630.3369 z=2 200 300 400 500 600 700 800 m/z 448.7636 z=2 406.9616 406 9616 430.2322 z=? z=4 495.6001 z=3 515.7930 z=2 479.7683 z=? 642.3696 z=2 806.3810 z=2 655.3430 z=2 580.2760 z=3 747.3893 z=3 788.8860 z=2 703.6799 742.8968 z=2 z=3 3 859.4209 z=2 2 932.5008 z=2 450 500 550 600 650 700 750 800 850 900 1400 1000 1100 1366.6 66221 1200 1300 1400 1500 744 48 .8801 207.1122 20 870.4299 618.6508 235.1070 332.1048 567.7501 400 926.9 69765 600 800 967.4793 967 4793 z=2 950 1000 m/z 1200 1400 1600 1800 2000 References 425.2243 60 265.9941 40 234.1442 279.0970 837.4692 623.3741 392.1806 213.1157 20 738.4023 460 003 .0355 701 013 .3510 756.3984 200 300 400 500 600 700 919 946 .4628 800 900 1347.3011 1000 1100 1200 1300 Rel ative Abun ndance 80 60 40 221.0 091 9 6 336 361 .1184 200 300 400 500 600 792.3927 893.4396 1008.4644 700 900 1000 1100 1200 1300 1400 40 209.1027 251.1496 347.1664 20 200 300 414.2123 460.2502 546.2836 400 500 918.5521 790.3936 860.4276 912.2214 600 700 1 2 3 4 5 800 900 1046.2002 1000 80 400 600 800 1000 m/z 1200 1400 1600 40 1100 1200 200 300 400 1042.5245 800 03 .3905 500 600 700 910.4715 399.1949 175.1186 734.4208 200 300 400 500 600 700 1009.5458 1124.5596 800 900 1000 1100 1256.9731 1200 1300 1400 m/z 817.4120 800 7694 69.4191 100 40 0 100 505.2741 EColi_noIIdet_30k_top10HCD_1#8709 RT: 55.54 AV:1 NL:8.81E4 T: FTMS+pNSI dFull [email protected][100.00-1550.00] 60 567.2697 680.3534 171.1124 20 0 100 806 60 .0945 185 851 .1279 339 392 .2019 256.1649 357.2124 797.3891 286.1393 1800 80 20 561.2621 349.6637 60 1438.2389 1593.8347 1679.2257 1853.9678 1024.0963 1162.3309 100 81541 5.4147 m/z C 200 678.3557 745.4022 0 100 403.2353 300.1898 20 1500 607.3185 249.1592 136.0753 201.1233 602.3527 685.3633 464.2565 945.4672 900 m/z 1000 1143.5685 1100 1256.6429 1200 1300 1445.7957 1400 1500 1600 1 W 1. Wouters, t E E.R., R S Splendore, l d M M., S Senko, k M M.W., W S Syka, k JJ.E.P., EP D Dunyach, h J J Design J.-J., D i off a Progressively P i l Stacked St k d Ring Ri Ion I Guide G id for f Improved I d Ion Transmission at High Pressure, ASMS 2008. 647.8408 0 80 60 40 459.7770 173.1280 EColi_noIIdet_30k_top10HCD_1#8711 RT: 55.55 AV:1 NL:1.34E5 T: FTMS+pNSI dFull [email protected][100.00-1625.00] EColi_noIIdet_30k_top10HCD_1#8713 RT: 55.56 AV: 1 NL: 1.16E5 T: FTMS+pNSI dFull [email protected][100.00-1220.00] 408 82 .2104 232.1398 100 Relative Abund dance 800 m/z 1171.5236 1259.9012 80 120.0803 60 698.3206 100 Rela ative Abund dance 0 100 394.1754 528.2807 629.3283 Rela ative Abund dance 20 EColi_noIIdet_30k_top10HCD_1#8704 RT: 55.52 AV: 1 NL: 6.11E5 T: FTMS+pNSI dFull [email protected][100.00-1420.00] Relative Abu R undance Rela ative Abundance m/z EColi_noIIdet_30k_top10HCD_1#8712 RT: 55.55 AV: 1 NL: 2.04E5 T: FTMS+pNSI dFull [email protected][100.00-1520.00] 193 309 .0967 100 p provides a higher g HCD scan speed p and much improved p spectral p quality, q y, opening p g up p new perspectives p p for de novo sequencing, q g, quantitation of chemically labeled samples, and analysis of modifications which require high mass accuracy accuracy. 80 0 100 EColi_noIIdet_30k_top10HCD_1#8710 RT: 55.54 AV:1 NL:2.12E4 T: FTMS+pNSI dFull [email protected][100.00-1870.00] 677.3086 100 1929.8 98708 1222 225 .5409 1000 m/z EColi_noIIdet_30k_top10HCD_1#8707 RT: 55.53 AV: 1 NL: 9.72E4 T: FTMS+pNSI dFull [email protected][100.00-1395.00] 443.2350 542.3033 100 842.4172 z=2 812.4036 z=2 1300 729.0183 60 40 6542 peptides total identifies more than 1,000 1 000 proteins per hour from the proteolytic digest of an E. E coli whole cell lysate lysate. 1256.9731 1200 80 200 0 400 900 0 622.0023 z=3 610.6240 z=3 1100 EC Cli oli_noIIdet_30k_ k top1 10HCD D1# _1#87 8 06 RT: 55.53 AV: 1 NL: 2 23 .30E5 T: FTMS+pNSI dFull [email protected][100.00-2000.00] 120.0803 100 Relative A Abundance 53.385 53.381 1000 724.4352 825.4767 876.4540 972.5574 759.3694 992.0 20388 1132 20 .0391 1.0 0.0 900 643.4118 416.1776 0 100 53.477 0.5 1009.5458 1124.5596 800 244.0922 329 91 .1811 20 1.5 Relative Ab R bundance Relative Ab bundance 2.5 2.0 734.4208 200 EColi_ li noIIdet_ t 30k_ k top10HCD D1# _1#8705 RT: 55 555 .53 AV: 1 NL: 1 12 .20E5 T: FTMS+pNSI dFull [email protected][100.00-1515.00] 129.1018 100 110 100 ng 910.4 04715 399.1949 m/z Time (min) 3.0 505.2 52741 175.1186 0 100 0 15 797.3891 286 61 .1393 171.1124 20 773 provides a significantly increased scan speed in MS and MS/MS mode d due d tto it its hi higher h ttransmission i i iion source, d duall pressure ion i trap, and improved HCD cell. 561.2621 349.6637 60 111.83 95.03 88.05 80 40 4072 647.8408 111 91 111.91 94.92 698.3206 100 Relative Abundancce 45.60 30.57 80 NL: 2.24E8 Base Peak Chromatogram g 1697 C Conclusions l i ECo_ oli no od IIdet_ t 30_ 0k top p10HCD1 _ #8 8704 RT: 555 55.52 AV: 1 NL: 6.11E5 T: FTMS+pNSI dFull [email protected][100.00-1420.00] Relative A Abundance e 67.71 41 HCD The LTQ Orbitrap p Velos hybrid y mass spectrometer p RT: 14.08 - 114.56 100 787 1059 proteins total B 2%-30% ACN in 90 min Unique peptides (100 ng) CID HCD 231 A D Unique proteins (100 ng) 20 ng Raw data files were searched with the Mascot™ algorithm (Matrix S i Sciences) ) using i Thermo Th Scientific S i tifi Proteome P t Discoverer Di software ft v. 1.2. 12 20 8504 peptides total 1221 proteins total 3765 2000 11µg While the first method uses the ion trap p to detect the CID fragment g ions,, the second method employs the Orbitrap to detect the HCD fragment ions providing accurate masses for both MS and MS/MS scans ions, scans. In addition to the different acquisition methods methods, two different gradient lengths were applied: 60 min and 90 min (2% (2%-30% 30% B) B). The methods and the res results lts are ssummarized mmari ed in Fig Figures res 2 2-6. 6 NanoLC NanoLC-MS/MS MS/MS analyses anal ses of 1 µg E. E colili digest di t with ith a 60 min i gradient di t and d a ddTOP20 CID method th d yields 1050 unique proteins based on 6582 unique peptides (results obtained with an FDR < 1%). ) 4759 1 7 8 Data Processing (1) TOP20 method (1 OT Full MS scan + 20 dd CID scans), scans) and (2) TOP10 HCD method (1 OT Full MS scan + 10 dd HCD scans). scans) 6344 1376.9 69908 1300 2 3 4 5 200 ITMS2 7601 7000 274.1868 60 6 800 (2% gradient di U i Unique P Peptide tid ID IDs, 90 min i gradeint d i t (2%-30% (2 (2-30 3030% %B)B) 4000 C 1000 HCD 8000 769.4191 100 800.3905 100 ng 399.1949 EC Cli oli_noIIde IId t_30k_top10HCD D1#809 _1#8709 RT: 55.54 AV V1 : 1 NL:8 L 881 .81E4 T: FTMS+pNSI dFull [email protected][100.00-1550.00] 40 185.1279 339.2019 256.1649 357.2124 286.1393 171.1124 m/z 60 1 µg 0 797.3891 60 1800 80 20 561.2621 349.6637 0 100 806.0945 100 414.2123 460.2502 546.2836 347.1664 201.1233 1500 607.3185 251.1496 40 53633 602 023 .3527 685.3 464.2565 100 ng 6478 7.8408 80 0 678.3557 249.1592 20 459.7770 1731 3.1280 EC Cli oli_noIIde IId t_ t 30k 0kt _top10HCD D1#8 _1#8711 RT: 555 5.55 AV1 V: 1 NL: L1 134 .34E5 T: FTMS+pNSIdFull [email protected][100.00-1625.00] 60 40 60 1171 15 .5236 1259 990 .9012 80 136.0753 80 120.0803 1 µg 200 698.3206 100 Relative Abundance A 20 0 100 This complex peptide mixture was separated using a Thermo Scientific S f Surveyor LC and MicroAS autosampler with a reversed-phase peptide trap p ((100 µ µm inner diameter, 2 cm length) g ) and a reversed-phase p analytical y column (75 ( µm µ inner diameter,, 10 cm length, g , 3 µm µ particle p size both NanoSeparations, size, NanoSeparations NL), NL) at a flow rate of 300 nL/min. nL/min To evaluate the performance of the new linear ion trap trap-Orbitrap Orbitrap mass spectrometer t t ffor characterization h t i ti off complex l proteomes, t nanoLCLC MS/MS analysis l i off 1 µg, 100 ng, and d 20 ng off a proteolytic t l ti digest di t off E. coli whole cell lysate was performed. Two different instrument methods were employed for this analysis: 1017 995 800 425.2243 60 EColi_n li noIIdet_ t 30k 0kto _top10HCD D1#8 _1#8712 RT: 55 55 .55 AV: 1 NL: 2 204 .04E5 T: FTMS+pNSIdFull [email protected][100.00-1520.00] 193.0967 100 1200 Results 1157 1000 200 80 0 100 Liquid Chromatography FIGURE 1. Schematic of the LTQ Orbitrap p Velos hybrid y mass spectrometer equipped with an ETD source. (2%-30% (2% 30% B) (2%-30% Protein ID, 90 min gradient (2-30 %B)B) 80 200 0 400 500 EColi_noIIdet_30k_top10HCD_1#8707 RT: 55.53 AV: 1 NL: 9.72E4 T: FTMS+pNSIdFull [email protected][100.00-1395.00] 443.2350 542.3033 100 754.9254 z=2 683.3400 z=2 z 2 400 501.2730 147.1123 60 Relative Abundance A Relative Abundance 627.8640 z=2 40 300 0 724.3933 z=2 568.3077 617.8195 z=2 z=4 418.9117 z=3 200 80 RT = 43.856 min; OT Full MS, 1e6, 30k 80 60 910.4715 7344 4.4208 Relative Ab bundance 43.826 505.2741 399.1949 175.1186 EColi_noIIdet_30k_top10HCD_1#8706 RT: 55.53 AV: 1 NL: 2.30E5 T: FTMS+pNSIdFull [email protected][100.00-2000.00] 120.0803 100 43.869 4 171.1124 20 0 100 6 2 Significant technology improvements have been implemented in the LTQ Orbitrap p Velos™ mass spectrometer, p including: g (a) ( ) a progressive p g stacked-ring g ion guide g (S-Lens) ( ) with 5-10x increased ion transmission;; (b) a dual-pressure dual pressure differentially pumped ion trap with a higher-pressure higher pressure cell for improved ion trapping, trapping isolation, isolation and CID efficiencies efficiencies, and a lower-pressure cell for improved resolution and/or scan speed; (c) predictive AGC for increased scan speed; (d) an HCD-collision HCD collision cell with axial field for improved performance; (e) improved vacuum in the O bit Orbitrap chamber h b ffor b better tt iintact t t protein t i analysis. l i Methods 60 797.3891 286.1393 EColi_noIIdet_30k_top10HCD_1#8705 RT: 55.53 AV: 1 NL: 1.20E5 T: FTMS+pNSIdFull [email protected][100.00-1515.00] 129.1018 100 84.22 77.49 Time (min) 10 Enormous improvements in mass spectrometry technology over the last few years have allowed for ever-deepening analysis of complex proteomes However, proteomes. However many low-abundance low abundance proteins remain undetected in current large-scale large scale proteomic analyses due to the limits on the rate at which hi h MS/MS spectra t can be b acquired. i d To T solve l this thi undersampling d li problem, we developed a new hybrid linear ion trap-Orbitrap mass spectrometer (Thermo Scientific LTQ Orbitrap Velos hybrid mass spectrometer, p , Figure g 1)) that p provides faster MS/MS scanning g in the ion trap p ((up p to 10 p peptide p sequences q p per second), ), thereby y increasing g the depth of analysis of complex protein mixtures. In the present work, we evaluated the ability of the newly developed hybrid instrument to identify more proteins, proteins with increased sequence coverage and confidence confidence. 55 40 Relative Ab bundance 30 Relative A Abundance e Introduction 25 561.2621 349.6637 60 m/z 0 20 80 0 100 69 66 69.66 64.84 20.94 19.01 647.8408 69.54 61.92 698.3206 100 Relative Ab R bundance Purpose: Evaluate the performance of the newly developed hybrid linear ion trap-Orbitrap trap Orbitrap mass spectrometer for characterization of complex proteomes Methods: NanoLC-MS/MS analyses of a complex protein proteolytic digest from E. coli whole cell lysate FIGURE 2. NanoLC-MS/MS analysis y of 1 µg g E. coli digest g using g TOP20 CID method ((1x OT full scan + 20x ddCID scans). ) A) Base peak chromatogram displaying the scan speed for a full scan cycle. B) 10 consecutive CID MS/MS spectra and their assigned peptide sequences sequences. C) Peptide ID from Protein Discover based on the CID spectra displayed in B. B Relattive Abundan nce Overview 1 µg of E. E coli digest was separated over 90 min and analyzed with CID (ddTOP20 CID method) and HCD (ddTOP10 HCD method) in separate runs The number of identified proteins was well above 1000 for each run, runs. run based on 7601 and 6344 peptides peptides, respectively respectively, (Figure 5) as an average f from d duplicate li t runs. Th The overlap l off id identifications tifi ti ffrom single i l runs using i C versus HCD CID C was 81% on the protein level and 68% on the peptide level. The speed of CID and HCD MS/MS spectra acquisition is significantly g y increased on the LTQ Orbitrap p Velos hybrid y mass spectrometer, p , which is mainlyy due to the much reduced fill times. 80 274 741 .1868 60 40 175.1185 20 0 100 200 591.2900 290.1455 690.3584 389.2133 520.2537 469.1678 300 400 500 600 700 2 Pekar Second 2. Second, T T., Blethrow Blethrow, JJ.D., D Schwartz Schwartz, JJ.C., C Merrihew Merrihew, JJ.E., E MacCoss M.J., MacCoss, M J Swaney, Swaney D.L., D L Russell, Russell JJ.D., D Coon Coon, JJ.J., J and Z b Zabrouskov, k V. V Dual-Pressure D lP Li Linear IIon T Trap M Mass Spectrometer S t t I Improving i the h Analysis A l i off Complex C l Protein P i Mixtures, Mi A l Chem. Anal. Ch 2009, 81, 7757–7765. 924 445 .4564 837.4249 965.4013 800 900 m/z 1000 1110.5138 1100 1224.5483 1200 1376.9908 1300 1400 1500 3 Olsen JJ.V., 3. V Schwartz JJ.C., C Griep-Raming Griep Raming J., J Nielsen M M.L., L Damoc Damoc, E D E., Denisov, i E E., L Lange, O O., R Remes, P P., T Taylor, l D D., S Splendore, l d M M., W t Wouters, E.R., ER S Senko, k M., M Makarov, M k A., A Mann, M M., M Horning, H i S. S AD Duall Pressure Linear Ion Trap - Orbitrap Instrument with Very High Sequencing Speed. Mol Cell Proteomics. 2009 Dec; 8(12):2759-69. 6 7 8 9 10 Mascot is a trademark of Matrix Science Ltd. All other trademarks are the property of Thermo Fisher Scientific and its subsidiaries. This information is not intended to encourage use of these products in any manners that might infringe the intellectual property rights of others. others
© Copyright 2026 Paperzz