Parsevalβs Theorem (complex version): Let π β πΏ2 [βπ, π]. Then π π‘ π βπ π(π‘) 2 ππ‘ = 2π β π=ββ ππ 2 , where ππ = Proof: We will instead prove that π, π = 2π π βπ 2π 1 β π=ββ ππ ππ 2 = π(π‘)π βπππ‘ ππ‘. , where π = β πππ‘ , π=ββ ππ π πππ‘ πππ‘ πππ‘ π= β , ππ = π , and ππ = π . We will examine the case where π =ββ ππ π π=βπ ππ π π =βπ ππ π π π = π. First, we need to show that ππ , ππ = 2π π=βπ ππ ππ . Now, ππ , ππ πππ‘ πππ‘ πππ‘ πππ‘ = π , π = π , π by linearity on the first term. By π=βπ ππ π π =βπ ππ π π=βπ ππ π π =βπ ππ π π πππ‘ additivity on the second term and conjugate symmetry, we obtain π=βπ ππ π , π πππ‘ . π =βπ ππ π 0, π β π π πππ‘ π πππ‘ Now, since 2π , 2π is an orthonormal set, then π πππ‘ , π πππ‘ = . Since π = π, then we 2π, π = π π π π obtain π π=βπ ππ π =βπ ππ 2π = π=βπ ππ ππ 2π. Hence, ππ , ππ = 2π π=βπ ππ ππ . Now we must show that ππ , ππ β π, π as π β β. We will do so by showing that ππ , ππ β π, π β 0 as π β β. Now, ππ , ππ β π, π = ππ , ππ β π, ππ + π, ππ β π, π = ππ β π, ππ + π, ππ β π by additivity of the first and second terms. By the Schwarz inequality, we obtain ππ β π, ππ + π, ππ β π β€ ππ β π ππ + π ππ β π . By convergence in the norm, we obtain ππ β π, ππ + π, ππ β π β€ 0 ππ + π 0 = 0. Hence, ππ , ππ β π, π β 0 as π β β. This completes the proof. β Define the convolution of π and π, denoted π β π π‘ , as π(π₯) = β π=ββ ππ π πππ₯ and π(π₯) = β π=ββ 1 Ο 2π βΟ π π‘ π(π₯ β π‘) ππ‘. If ππ π πππ₯ , then π β π π‘ = Proof: From the definition of complex Fourier series, we know that π β π π‘ = need to show that ππ = ππ ππ . Now, ππ = 1 Ο 2Ο βΟ β πππ₯ . π=ββ ππ ππ π β πππ₯ , π=ββ ππ π so we π β π π‘ π βπππ₯ ππ₯ = 1 Ο 1 Ο 1 Ο 1 Ο π π‘ π(π₯ β π‘) ππ‘ π βπππ₯ ππ₯ = 2Ο βΟ 2π βΟ π π‘ π(π₯ β π‘) π βπππ₯ ππ‘ ππ₯ = 2Ο βΟ 2π βΟ Ο 1 Ο 1 π π‘ βΟ π(π₯ β π‘) π βπππ₯ ππ₯ ππ‘ by Fubiniβs Theorem. Now, let π’ = π₯ β π‘. Then ππ’ 2Ο βΟ 2π = ππ‘, π₯ = π’ + π‘, and the limits of integration do not change. Hence, we obtain Ο 1 Ο 1 π π‘ βΟ π(π’) π βππ (π‘+π’) ππ’ ππ‘ 2Ο βΟ 2π 1 Ο 1 Ο π π‘ π βπππ‘ 2π βΟ π(π’) π βπππ’ ππ’ 2Ο βΟ This completes the proof. β 1 = 2Ο ππ‘ = Ο 1 Ο π π‘ βΟ π(π’) π βπππ‘ π βπππ’ ππ’ ππ‘ = βΟ 2π 1 Ο 1 Ο π π‘ π βπππ‘ ππ ππ‘ = 2Ο βΟ π π‘ π βπππ‘ 2Ο βΟ ππ‘ ππ = ππ ππ . Riemann-Lebesque Theorem: Let π(π₯) be a piecewise-continuous function on π π [π, π]. Then limπββ π π‘ cos ππ‘ ππ‘ = limπββ π π π(π‘) sin ππ‘ ππ‘ = 0. π΅ π=π Lemma 1: Let π(π) be a ππ -periodic function and πΊπ΅ π = ππ + π π Then πΊπ΅ π = π π(π + π) βπ π + π π΅ π=π ππ¨π¬ ππ π π. π π=1 Proof: By the definitions of Fourier coefficients, we have ππ π₯ = π0 + 1 π 2π βπ π 1 π βπ π π=1 π(π‘) ππ‘ + π 1 π(π‘) ππ‘ + π βπ π π π=1 Now, let π’ = π‘ β π₯. Then we obtain we obtain π βπ π(π‘) sin ππ‘ ππ‘ sin ππ₯ = 2π 1 π βπ π(π‘) ππ‘ + π π‘ cos ππ‘ cos ππ₯ + sin ππ‘ sin ππ₯ ππ‘ = 2π π βπ 1 π₯) ππ‘ = 2π π 1 π 1 2 π π₯+π’ βπ + 1 π π₯+π’ βπβπ₯ π π=1 cos ππ’ 1 2 1 2 + cos ππ’ sin π’ 2 π then sin π π=1 1 β2 π’ 1 cos ππ’ sin 1 sin 2 1 1 1 π’ 2 π + 2 π’ β sin 1 2 = sin π + π’ 2 1 2 + π π + π Lemma 3: Let π·π΅ π = π 1 2 βπ π π=1 cos 0 1 =2+ π’ π π=1 1 β π₯) ππ‘. ππ’. Since π(π₯) is 2π-periodic, 1 1 2 1 π’ 2 π’ β sin 1 2 1 π’ 2 1 = 2 sin π + 2 π’ β 2 + π΅ π=π ππ¨π¬ ππ . Then π π· βπ π΅ 1 =2+ π¬π’π§ π΅+π π π . ,π β π π π¬π’π§ π π 1 π = π + 2. Now, if π’ 1 π=1 2 = 1 , we have sin 1 π΅ +π π,π = π = π π’ = 2 sin π + 2 π’ β 2 sin π π=1 cos ππ’ π π‘ cos π(π‘ β π cos π(π‘ π=1 + π΅ π=π ππ¨π¬ ππ sin ππ’ + 2 β sin ππ’ β 2 π’ 2 π(π‘) ππ‘ + ππ’ as desired. β =2+ = 2 sin π + 2 π’ β sin π π=1 π π=1 cos ππ’ π 1 = π=1 2 1 2 π π‘ π π=1 cos ππ’ + Lemma 2: For all π β β+ and for all π β [βπ , π ], π π + Proof: If π’ = 0, then 1 π βπ π π=1 π 1 πβπ₯ π βπ π π‘ cos π(π‘ β π₯) ππ‘ = π 1 π ππ cos ππ₯ + ππ sin ππ₯ = 1 π(π‘) cos ππ‘ ππ‘ cos ππ₯ + π π 1 π βπ π π=1 ππ ππ¨π¬ ππ π + ππ π¬π’π§ ππ π . π’ 2 β 0, 1 sin π + 2 π’ β . Since π + cos ππ’ sin π=1 π π=1 cos ππ’ = π’ 2 = sin π+1 2 π’ . 2 sin π’ 2 β π π π = π . Pointwise Convergence Theorem: If π(π₯) is continuous and 2π-periodic, then for every point π₯ where πβ(π₯) exists, the trigonometric Fourier series, πΉ(π₯), converges to π(π₯). Proof: We need to show that lim ππ π₯ = π(π₯). We will instead prove that lim ππ π₯ β π π₯ = 0. By πββ πββ π Lemma 1, lim ππ π₯ β π π₯ = lim βπ ππ π’ π(π₯ + π’)ππ’ β π π₯ β 1. By Lemma 3, we obtain πββ πββ π π π lim βπ ππ π’ π(π₯ + π’)ππ’ β π π₯ βπ ππ π’ ππ’ = lim βπ ππ π’ π(π₯ + π’) β π π₯ ππ’. By Lemma 2, πββ πββ π π sin π+1 2 π’ sin ππ’ cos π’ 2 +sin π’ 2 cos ππ’ we obtain lim π(π₯ + π’) β π π₯ ππ’ = lim π(π₯ + 2π sin π’ 2 2π sin π’ 2 πββ βπ πββ βπ π sin ππ’ cos π’ 2 cos ππ’ π’) β π π₯ ππ’ = lim + 2π π(π₯ + π’) β π π₯ ππ’ = 2π sin π’ 2 πββ βπ π lim πββ βπ π(π₯+π’)βπ π₯ sin ππ’ cos π’ 2 2π sin π’ 2 and π(π’) = π lim πββ βπ π(π₯+π’)βπ π₯ 2π + π(π₯+π’)βπ π₯ cos ππ’ 2π ππ’. Now, let π(π’) = π(π₯+π’)βπ π₯ cos π’ 2 2π sin π’ 2 . By substitution and the Riemann-Lebesque Theorem, we obtain π πββ βπ π(π’) sin ππ’ + π(π’) cos ππ’ ππ’ = lim π πββ βπ π(π’) sin ππ’ ππ’ + lim π(π’) cos ππ’ ππ’ = 0. β
© Copyright 2025 Paperzz