CNR IAMC - Istituto per l’Ambiente Marino Costiero Messina, Italy Università degli Studi di Messina WP4-WP5 State of the Art April 2003 Isolates analysis Anaerobic chamber 0 SOLID Brine based media O2 Reisolation by liquid and solid cultures O2 ONR Saline Medium (3%Salinity) Strain collection Phylogentical and physiological charachterisation No Isolates from BodyBrine Isolates analysis WP4-WP5 Phylogenetical Analysis Taxonomic Diversity REP Fingerprinting Aerobic/Anaerobic growth curves Methabolic analysis “Bottle Neck” and others Conclusions Physiological Application Isolates analysis Isolated strains Bulleidia e. Methanococcus jannacii Desulfococcus biaticus Arcobacter butzleril Alteromonas macleodi Idiomarina loihensis Halomonas variabilis 339-27-530 364 365 367-27 369-27 3691492 370 Marinobacter aqueoli 357 351g 348g-530 345 340-27 350 Marinobacter aqueoli 374b 351b Alteromonas sp. 354 374l 363 Marinobacter sp. 348b Marinobacter hydrocarbonoclasticus 369 Pseudomonas sp. Pseudomonas sp. 328 Pseudomonas pseudoalcaligenes Pseudomonas sp. 353 359 Alcanivorax sp. 358 Alcanivorax Venustit 368 Fundibacter jadensi Alcanivorax borkumensis Sulfitobacter pontiacus 0. Roseobaccter sp. 1 Isolates analysis Phylogenetical Analysis Taxonomic REP Fingerprinting Aerobic/Anaerobic growth curves Methabolic analysis “Bottle Neck” and others Conclusions Diversity Physiological Application Isolates analysis REP Fingerprinting Repetitive Extragenic Palyndromic Analysis M 2 3S 5 1 6 TAACGGCGCTCCACA ………………….TGTGGAGCGCCGTTA 4 GENE ATTGCCGCGAGGTGT…………………..ACACCTCGCGGCAAT 2 1 6 3 5 4 Isolates analysis REP Fingerprinting Isolates analysis REP Fingerprinting Marinobacter aqueoli Marinobacter aqueoli Marinobacter aqueoli Marinobacte hydrocarbonoclasticus Halomonas variabilis Marinobacter hydrocarbonoclasticus Marinobacter hydrocarbonoclasticus Pseudoalteromonas antarctica Halomonas variabilis Halomonas variabilis Halomonas variabilis Alcanivorax venusti Alcanivorax sp. Marinobacter hydrocarbonoclasticus Pseudomonas pseudoalcaligenes Marinobacter hydrocarbonoclasticus Alteromonas sp. Marinobacter aqueoli Idiomarina loiensis Idiomarina loiensis Marinobacter aqueoli Isolates analysis Phylogenetical Analysis Taxonomic REP Fingerprinting Aerobic/Anaerobic growth curves Diversity Physiological Methabolic analysis “Bottle Neck” and others Conclusions Application Isolates analysis Aerobic/Anaerobic growth curves Bioscreen analysis Reading at 640nm every 1.30h For 10days 4 replicate Aerobic ONR + Pyruvate Anaerobic Mineral oil ONR + Pyruvate Isolates analysis Aerobic/Anaerobic growth curves Aerobic 340 345 134h 114h 178h 142h Anaerobic 363 348 42h 102h Alteromonas sp. Marinobacter h. Idiomarina l. Marinobacter a. 351 350 354 356 122h 138h 34h 82h 62h 64h 88h 128h Marinobacter h. Marinobacter h. Marinobacter a. Ten days, four replicate Idiomarina l. Isolates analysis Aerobic/Anaerobic growth curves Aerobic 358 359 Anaerobic 353 339 108h 50h 116h 85h Alcanivorax v. Alcanivorax v. 365 367 Alteromonas sp. Halomonas v. 364 369 88h 92h 72h 72h 104h 94h 92h 78h Halomonas v. Halomonas V. Halomonas v. Ten days, four replicate Halomonas v. Isolates analysis Aerobic/Anaerobic growth curves Aerobic 320 323 Anaerobic 326 328 184h 200h 54h 80h Idiomarina l. Marinobacter a. 327 330 124h 116h 182h 166h Marinobacter h. Marinobacter a. Marinobacter h. 333 Pseudomonas p. Ten days, four replicate Pseudomonas p. Isolates analysis REP Fingerprinting Marinobacter aqueoli Marinobacter 339 327 aqueoli Marinobacter aqueoli 124h hydrocarbonoclasticus Marinobacte Halomonas 182hvariabilis Marinobacter hydrocarbonoclasticus Marinobacter hydrocarbonoclasticus Pseudoalteromonas antarctica 50h Halomonas variabilis Halomonas variabilis 85h Halomonas variabilis v.h. Marinobacter Halomonas Alcanivorax venusti Alcanivorax sp. 369 345 hydrocarbonoclasticus Marinobacter Pseudomonas pseudoalcaligenes Marinobacter hydrocarbonoclasticus 114h sp. Alteromonas Marinobacter 142h aqueoli Idiomarina loiensis 72h Idiomarina loiensis 92h Marinobacter Halomonas v. h. Marinobacter aqueoli Isolates analysis Aerobic/Anaerobic growth curves Problems: • Preliminary data (not shown) seem to suggest that the isolates are not able to grow on pure brine. Future: • • To try the same experiment in aerobic and anaerobic condition using a salt gradient from SeaWater to pure Brine To try different substrates Isolates analysis Phylogenetical Analysis Taxonomic REP Fingerprinting Aerobic/Anaerobic growth curves Diversity Physiological Methabolic analysis “Bottle Neck” and others Conclusions Application Isolates analysis Methabolic analysis Why: • The study of the degradation of aromatic compounds has a very applicative meaning in order to evaluate the possible employ in bioremediation • The major part of dangerous or difficoult to remove compounds are aromatics • A great number of polluted areas is associated with hypersaline environment Methabolic analysis (Catechol, Gentisate, Protocatechuic acid) Isolates analysis Multiple culture on ONR + Aromatic compound Tested by turbidimetry of growing cells after 4 days The samples were incubated in anaerobic chamber to avoid spontaneous oxydation of substrates Catechol Oxygen Gentisate Oxygen Isolates analysis Catechol Gentisate Methabolic analysis (Catechol, Gentisate, Protocatechuic acid) Isolates analysis Catechol Gentisate Methabolic analysis (Catechol, Gentisate, Protocatechuic acid) Isolates analysis Catechol Gentisate Methabolic analysis (Catechol, Gentisate, Protocatechuic acid) Isolates analysis Methabolic analysis (Naphtalene, Fenantrene, Hexadecane) Direct cultivation on ONR Agar Blank in ONR without carbon source Hexadecane Methabolic analysis (Catechol, Gentisate, Protocatechuic acid) Isolates analysis # Catechol Gentisic ac. Protocatech.ac. 368 ++ NS NS 359 ++ +++ + 340 +++ NS + 353 +++ + NS 339 NS + +++ 364 +++ NS NS 365 NS NS ++ 367 + NS NS 369 ++ NS +++ 320 ++ NS + 348b NS ++ + 351 + +++ NS 357 +++ +++ ++ 323 ++ NS NS 330 ++ + NS 354 ++ NS NS 363 NS NS + 370 + + NS 326 +++ + + 327 +++ NS +++ 345 +++ NS NS 350 +++ + NS 374 +++ NS NS 328 + + NS 333 ++ NS NS Species Alcanivorax sp. Alcanivorax venusti Alteromonas sp. Alteromonas sp. Halomonas variabilis Halomonas variabilis Halomonas variabilis Halomonas variabilis Halomonas variabilis Idiomarina l Idiomarina l M arinobacter aqueoli M arinobacter aqueoli Marinobacter aqueoli Marinobacter aqueoli Marinobacter aqueoli Marinobacter aqueoli Marinobacter aqueoli M arinobacter hydrocarbonoclasticus Marinobacter hydrocarbonoclasticus Marinobacter hydrocarbonoclasticus Marinobacter hydrocarbonoclasticus Marinobacter hydrocarbonoclasticus Pseudomonas pseudoalcaligenes Pseudomonas pseudoalcaligenes Preliminar data Isolates analysis 368 358 359 369 340 353 339 364 365 367 320 348b 323 330 354 363 370 357 351b 351g 326 327 350 374 328 333 Phe + Naph + + + + ++ + + Hex ++ ++ ++ + ++ ++ + + + ++ + ++ + + + ++ + + + ++ ++ ++ ++ ++ ++ ++ + ++ ++ ++ + ++ Control + Alcanivorax sp. Alcanivorax venusti Alcanivorax venusti + Halomonas variabilis Alteromonas sp. Alteromonas sp. + Halomonas variabilis + Halomonas variabilis + Halomonas variabilis + Halomonas variabilis Idiomarina l Idiomarina l + Marinobacter aqueoli + Marinobacter aqueoli + Marinobacter aqueoli Marinobacter aqueoli + Marinobacter aqueoli + Marinobacter aqueoli Marinobacter aqueoli Marinobacter aqueoli + Marinobacter hydrocarbonoclasticus + Marinobacter hydrocarbonoclasticus + Marinobacter hydrocarbonoclasticus + Marinobacter hydrocarbonoclasticus + Pseudomonas pseudoalcaligenes Pseudomonas pseudoalcaligenes 357 368 358 359 369 340 353 339 364 365 367 320 348b 323 330 354 363 370 348g 351b 351g 326 327 345 350 374 328 333 Cat +++ ++ Gen +++ NS Protoc ++ NS ++ ++ +++ +++ NS +++ NS + ++ NS ++ ++ ++ NS + +++ NS NS + + NS NS NS NS ++ NS + NS NS + + +++ + NS +++ NS ++ NS + + NS NS NS + NS + +++ NS +++ +++ +++ +++ +++ + ++ + NS NS + NS + NS + +++ NS NS NS NS NS Phe + + Naph + + + + + ++ + + Hex ++ ++ ++ ++ + ++ ++ + + + ++ + ++ + + + ++ ++ ++ ++ ++ + ++ ++ + ++ ++ ++ + ++ Blank Species + Alcanivorax Sp + Alcanivorax sp. Alcanivorax venusti Alcanivorax venusti + Halomonas variabilis Alteromonas sp. Alteromonas sp. + Halomonas variabilis + Halomonas variabilis + Halomonas variabilis + Halomonas variabilis Idiomarina l Idiomarina l + Marinobacter aqueoli + Marinobacter aqueoli + Marinobacter aqueoli Marinobacter aqueoli + Marinobacter aqueoli Marinobacter aqueoli Marinobacter aqueoli Marinobacter aqueoli + Marinobacter hydrocarbonoclasticus + Marinobacter hydrocarbonoclasticus Marinobacter hydrocarbonoclasticus + Marinobacter hydrocarbonoclasticus + Marinobacter hydrocarbonoclasticus + Pseudomonas pseudoalcaligenes Pseudomonas pseudoalcaligenes Isolates analysis Methabolic analysis Future: • To repeat the experiments in salinity gradient • To check and charachterize the genes coding for the enzymes involved in the HC pathways by PCR and sequencing • To purify and charachterize the obtained enzymes Isolates analysis Conclusions Phylogenetical Analysis •The cultivatable components of bacterial communities from DHABs are not corresponding at all with the active components within the basins (Allochthnous/contaminant bacteria?) REP Fingerprinting Aerobic/Anaerobic growth curves Methabolic analysis (Catechol, Gentisate, Protocatechuic acid) Conclusions Isolates analysis Conclusions Phylogenetical Analysis REP Fingerprinting •Isolates with identical 16S rDNA sequences show different REP fingerprint. •The REP analysis shows an higher and variegate diversity in respect to the 16S rDNA sequence analysis that henances the low efficiency of 16S rDNA analysis. Aerobic/Anaerobic growth curves Methabolic analysis (Catechol, Gentisate, Protocatechuic acid) Conclusions Isolates analysis Conclusions Phylogenetical Analysis REP Fingerprinting Aerobic/Anaerobic growth curves •Every isolate shows peculiar growth curves and is able to grow both in aerobic and anaerobic conditions •Each isolate grows faster in aerobic than in anaerobic conditions but in general the maximum density for both conditions is comparable •The clustering of the isolates based on the obtained growth curves seems to correspond to the REP-16S rDNA grouping Methabolic analysis (Catechol, Gentisate, Protocatechuic acid) Conclusions Isolates analysis Conclusions Phylogenetical Analysis REP Fingerprinting Aerobic/Anaerobic growth curves Methabolic analysis (Catechol, Gentisate, Protocatechuic acid) •Some isolates are able to degrade different aromatic compounds at the marine salt conditions. The question on the range of salinity at which this capability is maintained is still opened. •Further analyses on the aromatic compound spectra are planned (included the halogenated compounds) as well as the molecular study of the bacterial enzymes involved in the HC pathways. Conclusions Isolates analysis Conclusions Phylogenetical Analysis REP Fingerprinting Aerobic/Anaerobic growth curves Methabolic analysis (aromatic compounds) Other substrates Conclusion We have a lot of work to do! Special Thank’s to the CNR staff
© Copyright 2026 Paperzz