Bioactive compounds in the different extracts of flowers of

Available online www.jocpr.com
Journal of Chemical and Pharmaceutical Research, 2016, 8(5):439-444
Research Article
ISSN : 0975-7384
CODEN(USA) : JCPRC5
Bioactive compounds in the different extracts of flowers of
Rhododendron arboreum Sm.
Vandana Gautam, Anket Sharma, Saroj Arora and Renu Bhardwaj*
Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar - 143005, Punjab,
India
_____________________________________________________________________________________________
ABSTRACT
In the present study, chloroform, hexane, ethyl acetate and petroleum ether extracts of flowers of Rhododendron
arboreum Sm. were investigated for their chemical composition using GC-MS. Different extracts showed the
existence of various bioactive compounds with an extensive range of countless therapeutic values. The results
showed that chloroform extract contained 34 metabolites, hexane extract contained 23 metabolites, ethyl acetate
extract contained 31 metabolites and petroleum ether extract contained 20 metabolites. Presence of these
compounds in flowers of R. arboreum proves the promising utilization of this food plant in the therapeutics.
Keywords: GCMS, Rhododendron arboreum Sm., Chemical composition.
_____________________________________________________________________________________________
INTRODUCTION
Every plant makes a distinctive blend of secondary metabolites. Thousands of these metabolites have been
discovered in different classes of plants. Those compounds are classified into different categories i.e. phenolic
compounds, flavonoids, proanthocyanidins, glycosides, saponins, glucosinolates, terpenes, alkaloids, tannins, resins,
liganins, proteins and peptides etc. Conventional remedies are imperative resource of latent valuable compounds for
the intensification of chemotherapeutic representatives [1]. A broad variety of remedial plant components is used for
hauling out as unprocessed drugs and they have diverse medicinal properties and low side effect profile [2]. Plant
products and their man-made derivatives constitute one half of all the indexed medicines all around the globe [3].
Polyphenols possess antimicrobial, anticarcinogenic, antioxidant, anti-inflammatory and antioxidant properties [4].
Foods rich in polyphenoilc compounds reduce the possibility of cancer, heart attack, cardiovascular disease and
neurological disorders [5,6]. Intake of flavonoids is beneficial in dementia [7]. Alkaloids are used in treatment of
Alzheimer’s Disease [8]. Rhododendron arboreum Sm. is regarded as one of the most beautiful flowers wearing,
evergreen medicinal plant of higher altitudes [9].Its flowers are used to make pickle by the native people of
Himachal Pradesh. The flower juice of R. arboreum is also very popular drink amongst the hilly people. Flowers of
R. arboreum contain phenols, saponins, xanthoprotein, steroids, tannin, and coumarin [10]. Presence of quercetin,
rutin and coumaric acid in methanolic extract R. arboreum flowers have been reported by Swaroop and coworkers
[11] using HPTLC. Some other HPTLC, NMR, IR and spectroscopic studies revealed the presence of phenolics,
epicatechin, syringic acid, quercitin, terpenoids and flavonoids in methanolic, alcoholic, aqueous and hexane
extracts of R. arboreum leaves [12,13]. Nisar and coworkers [14] reported alkaloids, terpenoids, tannins, reducing
sugars, steroids and saponins in roots of R. arboreum. Traditionally the plant is used for the treatment of various
ailments like diarrhea, headache [15]. Recent studies and experiments show that Rhododendron arboreum has many
439
Renu Bhardwaj et al
J. Chem. Pharm. Res., 2016, 8(5):439-444
______________________________________________________________________________
effective and efficient phytochemical activities in curing human diseases like diabetes [16], inflammation [17],
bacterial and fungal infections [13, 18] and diarrhea [19]. Thus further studies can be conducted to investigate the
unexploited potential of Rhododendron arboreum. So as a part and as a basis for further exploitation, the
phytochemicals in the flowers of Rhododendron arboreum were identified by GCMS analysis.
EXPERIMENTAL SECTION
Sample preparation
Fresh flowers were washed with double distilled water and dried in shade. The dried flowers were ground to fine
powder using mixer-grinder. 5 gram of flower’s powder was extracted with chloroform, hexane, ethyl acetate and
petroleum ether separately and the extracts were then dried at 50 °C under reduced pressure using vacuum rotary
evaporator. The residue was dissolved in 2.0 ml of respective solvents.
Analysis using GC-MS
Shimadzu GCMS-QP2010 Plus was used to analyze the chloroform, hexane, ethyl acetate and petroleum ether
extracts of flowers of R. arboreum Sm. The carrier gas used was Helium, with an initial column oven temperature
of 70°C for five minutes. The carrier gas was helium. At first, the column oven temperature was set at 70 °C and
held for 5 minutes, then increased to 250°C at 10°C / min and held for 10 minutes, again increased to 300°C at 10°C
/ min and held for 10 minutes. Injection temperature; 280°C, injection mode; splitless, sampling time; 1 minute,
flow control mode; linear, pressure; 110.8 k Pa, total flow 38.9 ml/min, column flow; 1.71 ml/min, linear velocity;
47.9 cm/sec, purge flow; 3 ml/min, sample injection volume; 4 µl, ion source temperature; 250°C, interface
temperature 290°C, solvent cut time; 3.5 minute and detector gain mode; relative. Analytical column used was DB5ms with 30 m length and 0.025 mm id.
Identification of compounds
All the detected compounds were identified by comparing mass spectra with National Institute of Standard and
Technology (NIST08s) and Wiley 7 library.
RESULTS AND DISCUSSION
Total 70 compounds were identified in four extracts of flowers of R. arboreum. Individually, the chloroform extract
contained 34 compounds (Table: 1), hexane extract contained 23 compounds (Table: 2), ethyl acetate extract
contained 31 compounds (Table: 3) and Petroleum ether extract contained 20 compounds (Table: 4). Linoleic acid,
9-octadecenoic acid (Z)-oleic acid, methyl commate B, flavone 4'-OH,5-OH,7-di-O-glucoside and octadecane are
common in four extracts, whereas, 17-pentatriacontene and eicosanoic acid were common in chloroform, hexane
and ethyl acetate extracts. Presence and absence of different compounds in the four extracts has been listed in
Table:5. Amongst those compounds, palmitic acid, linoleic acid and eicosanoic acid are fatty acids; heptadecanoic
acid is saturated fatty acid; methyl commate B and D are triterpine glycosides; dodecane is alkane hydrocarbon;
phthalic acid is diterpene; hexadecenol is terpene alcohol; globulol is sesqueterpene [20] and octadecadienoic acid is
livolic acid. Docosanoic acid, also known as behenic acid, is a carboxylic acid.
Palmitic acid possesses free radical scavenging activity [21]. Vitamin E possess antioxidant, anti-inflammatory,
antiageing, analgesic, antidiabatic, antidermatitic, antileukemic, antitumor, anticancer, hepatoprotective,
hypocholesterolemic, antiulcerogenic, vasodilator, antispasmodic and antibronchitic, antiplasmodic, antimicrobial
and anti-inflammatory properties
[22,23]. 9-octadecenoic acid exhibits antimicrobial and antibacterial potential [24]. Phthalic acid is used in
neurodegenerative diseases. 1,2-Benzenedicarboxylic acid is a plasticizer compound possessing antimicrobial
properties [23]. 9,12-Octadecadien-1-ol possess anti-inflammatory hepatoprotective, antiarthritic properties [23].
Linoleic acid, heptadecanoic acid and oleic acid possess antimicrobial activity [25]. Octadecene was found to exhibit
anticancer, antioxidant and antimicrobial activity [26,27]. Farnesol is used by the commensal, opportunistically
pathogenic fungus Candida albicans as a quorum sensing molecule that inhibits filamentation [28]. 9,12
octadecadienoic acid possess anti-inflammatory, antiarthritic and antimicrobial properties [29]. (3b)-stigmast-5-en3-ol is of great therapeutic value as it possess cholesterol lowering effects [30] and antiproliferative activities [31].
(3b)-Stigmast-5-en-3-ol also acts anti-diabetic agent and regulates the glucose transport. It restores the glucose
uptake activity without the stimulation of insulin, which proves its insulin-like property [32].
440
Renu Bhardwaj et al
J. Chem. Pharm. Res., 2016, 8(5):439-444
______________________________________________________________________________
Table:1
Sr. No.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
Phytochemicals present in chloroform extract of Rhododendron arboreum flowers
Name of Compound
Retention Time
Peak Area (%)
1-Dodecene adacene
8.074
0.49
1-Tetradecene n-tetradec-1-ene
12.040
1.02
9-Octadecene, (E)
14.825
1.46
9-Octadecenoic acid (Z)-oleic acid
16.730
0.27
9-Eicosene, (E)
17.153
1.58
Phthalic acid,
17.539
0.20
Heptadecanoic acid
18.916
9.09
3-Eicosene, (E)
19.221
1.45
9,12-Octadecadienoic acid (Z,Z)-linoleic acid
20.466
13.77
Docosanoic acid
20.753
1.91
1-Docosanol
21.096
1.07
Linoleic acid
21.226
0.21
Eicosanoic acid
22.463
0.46
1-Octacosanol
22.815
0.72
Octadecanal stearaldehyde
22.968
0.26
Tetratetracontane n-tetratetracontane
23.690
1.43
1,2-Benzenedicarboxylic acid
23.750
0.28
Thiosulfuric acid (H2S2O3)
24.079
0.21
Heptafluorobutyric acid
24.422
0.48
Docosane n-docosane
24.488
0.55
Nonacosane n-nonacosane
25.426
10.26
17-Pentatriacontene
26.374
0.28
Octadecane
26.462
0.46
Acetic acid, chloro-, octadecyl ester
27.529
0.82
Pentadecane, 8-hexyl-8-n-hexylpentadecane
27.780
3.45
Dodecanoic acid
28.341
0.64
1-Eicosanol n-eicosanol
31.125
3.81
1-Naphthalenepropanol
33.588
2.49
Stigmast-5-en-3.beta.-ol
35.273
22.79
Methyl commate D
35.404
2.36
Methyl commate B
36.129
6.56
Flavone 4'-OH,5-OH,7-di-o-glucoside
37.847
3.05
9,19-Cyclo-9.beta.-lanostane-3.beta.,25-diol
38.053
2.90
Agathic acid
39.526
3.27
Table:2
Sr. No.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
Phytochemicals present in hexane extract of Rhododendron arboreum flowers
Name of Compound
Retention Time
Peak Area (%)
Tetradecane n-tetradecane
5.283
0.94
Dodecane n-dodecane
8.361
0.19
Octadecanoic acid
18.420
0.61
9-Octadecenoic acid (Z)-oleic acid
18.901
7.0
Hexadecadienoic acid
19.999
0.43
9,12-Octadecadien-1-ol octadeca-9
20.467
5.24
Linoleic acid
20.532
1.51
Eicosanoic acid
20.753
1.62
Tetratetracontane n-tetratetracontane
23.695
1.84
1,2-Benzenedicarboxylic acid
23.759
1.76
Nonadecane n-nonadecane
24.495
0.78
Nonacosane n-nonacosane
25.437
13.78
Octadecane
26.472
0.74
17-Pentatriacontene
27.540
0.91
Tetracontane
27.798
6.60
1-Octacosanol
31.141
3.74
Acetic acid 1-methyl-3-propenyl ester
33.618
4.20
Stigmast-5-en-3-ol, (3.beta.)
35.263
24.14
Methyl commate D
35.418
3.80
Methyl commate B
36.139
9.04
Flavone 4'-OH,5-OH,7-di-O-glucoside
37.863
5.02
9,19-Cyclo-9.beta.-lanostane-3.beta.,25-diol
38.060
3.23
Agathic acid
39.524
2.87
441
Renu Bhardwaj et al
J. Chem. Pharm. Res., 2016, 8(5):439-444
______________________________________________________________________________
Table:3
Sr. No.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
Phytochemicals present in ethyl acetate extract of Rhododendron arboreum flowers
Name of Compound
Retention Time
Peak Area (%)
9-Octadecenoic acid (Z)-oleic acid
16.739
0.09
(cis)-2-nonadecene
17.149
0.03
2-Pentadecanone
17.575
0.08
Neophytadiene
17.647
0.11
Phthalic acid
18.493
0.02
Heptadecanoic acid
18.869
1.08
2-Hexadecen-1-ol
20.265
0.59
Linoleic acid
20.485
0.26
Eicosanoic acid
20.727
0.26
2H-Pyran-2-one, tetrahydro-6-tridecyl
22.221
0.05
Octadecane
23.689
0.09
1,2-Benzenedicarboxylic acid
23.751
0.09
Pentafluoropropionic acid
24.425
0.04
Acetic acid, chloro-, octadecyl ester
25.209
0.04
Tetratetracontane
25.399
0.37
17-Pentatriacontene
26.386
0.06
2,6,10,14,18,22-Tetracosahexaene
26.596
1.02
1-Eicosanol n-eicosanol
27.548
0.18
Nonadecane n-nonadecane
27.776
0.36
Acetic acid, tetramethyl-hexadecatetraenyl ester
27.854
0.07
Vitamin E
31.208
1.90
14-.beta.-H-pregna
31.520
0.44
1-Naphthalenepropanol
33.851
9.98
Flavone 4'-OH,5-OH,7-di-O-glucoside
34.803
0.49
Methyl commate C
35.567
7.24
Methyl commate B
36.475
39.12
Globulol
37.262
2.29
D:A-Friedoolean-6-ene
38.113
29.87
Urs-12-en-28-al
38.484
0.60
Olean-12-en-28-al
39.007
1.67
d-Norandrostane (5.alpha.,14.alpha.)
39.222
1.51
Table:4 Phytochemicals present in petroleum ether extract of Rhododendron arboreum flowers
Sr. No.
Name of Compound
Retention Time
Peak Area (%)
1
Palmitic acid
18.903
9.67
2
9,12-Octadecadienoic acid
18.903
6.19
3
Linoleic acid
20.532
1.63
4
9-Octadecenoic acid (Z)-oleic acid
20.754
2.06
5
Docosane n-docosane
23.694
2.00
6
Octadecane
24.494
0.81
7
Tetratetracontane n-tetratetracontane
25.431
14.06
8
Tetratetracontane
26.470
0.67
9
Farnesol
26.584
0.35
10
1-Docosanol
27.548
0.59
11
Eicosane
27.788
4.89
12
1-Eicosanol n-eicosanol
31.144
3.42
13
1-Eicosanol n-eicosanol
33.605
3.88
14
Stigmast-5-en-3-ol, (3.beta.)
35.249
22.29
15
Methyl commate D
35.415
3.50
16
Methyl commate B
36.131
7.84
17
Lanosterol
37.241
2.99
18
Isosteviol
37.500
2.02
19
Flavone 4'-OH,5-OH,7-di-O-glucoside
37.855
4.21
20
9,19-Cyclo-9.beta.-lanostane-3.beta.,25-diol
38.060
4.10
21
1-Naphthalenecarboxylic acid
39.528
2.83
442
Renu Bhardwaj et al
J. Chem. Pharm. Res., 2016, 8(5):439-444
______________________________________________________________________________
Table:5 Comparative account of phytochemicals in four extracts of R. arboreum flowers
Sr. No.
Name of Compound
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
1-Tetradecene n-tetradec-1-ene
Neophytadiene
3-Eicosene
Linoleic acid
9-Octadecenoic acid (Z)-oleic acid
9-Eicosene
Tetratetracontane n-tetratetracontane
Acetic acid, chloro-octadecyl ester
Methyl commate C
Methyl commate B
Methyl commate D
Flavone 4'-OH,5-OH,7-di-O-glucoside
Globulol
Olean-12-en-28-al
Docosanoic acid
Octadecane
1,2-Benzenedicarboxylic acid, ditridecyl ester
Vitamin E
1-Dodecene adacene
Tetradecane n-tetradecane
2-Hexadecen-1-ol
1-Docosanol behenic alcohol
1,2-Benzenedicarboxylic acid, dioctyl ester dioctyl phthalate
17-Pentatriacontene
Nonadecane n-nonadecane
Palmitic acid
9,12-Octadecadienoic acid (Z,Z)-linoleic acid
Docosane n-docosane
1,2-Benzenedicarboxylic acid, bis(2-ethylhexyl) ester Bis(2-ethylhexyl) phthalate
Eicosane
1-Eicosanol n-eicosanol
9,19-Cyclo-9.beta.-lanostane-3.beta.,25-diol
Agathic acid
9-Octadecene
Phthalic acid
Heptadecanoic acid
Eicosanoic acid
1-Octacosanol
Octadecanal stearaldehyde
Thiosulfuric acid (H2S2O3)
Heptafluorobutyric acid, n-octadecyl ester
Nonacosane n-nonacosane
Pentadecane, 8-hexyl-8-n-hexylpentadecane
Dodecanoic acid
1-Naphthalenepropanol
Stigmast-5-en-3.beta.-ol
Dodecane n-dodecane
Octadecanoic acid
Hexadecadienoic acid
9,12-Octadecadien-1-ol
Tetracontane
Acetic acid 1-methyl-trimethyl-bicyclopropenyl ester
Stigmast-5-en-3-ol, (3.beta.)
(cis)-2-nonadecene
2-Pentadecanone, 6,10,14-trimethyl
2H-Pyran-2-one
Pentafluoropropionic acid
Tetratetracontane
Tetracosahexaene-hexamethyl
Acetic acid 3,7,11,15-tetramethyl-hexadeca-2,6,10,14-tetraenyl ester
14-.beta.-H-pregna
1-Naphthalenepropanol
D:A-Friedoolean-6-ene
Urs-12-en-28-al
d-Norandrostane (5.alpha.,14.alpha.)
9,12-Octadecadienoic acid
Farnesol
Lanosterol
Isosteviol
1-Naphthalenecarboxylic acid
[+Present -Absent]
443
Chloroform
Extract
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
-
Hexane
Extract
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
-
Ethyl acetate
Extract
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
-
Petroleum ether
Extract
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Renu Bhardwaj et al
J. Chem. Pharm. Res., 2016, 8(5):439-444
______________________________________________________________________________
CONCLUSION
As the people living in hilly areas are already taking the valuable health benefits of Rhododendron arboreum
flowers by using it as a part of traditional food, there is a need to promote this valuable knowledge to the other parts
of country so that people of plains can also take the benefit. Rhododendron arboreum ethanolic flower extract
possess antioxidant activity against hydroxyl radical, superoxide radical and lipid peroxidation [33]. The present
study may be used to validate the scientific explanation for the above. It is a complex process to understand the
active principles behind any medicinal activity. This detailed GC-MS profiling of four extracts of flowers is opening
gateway in the direction of consideration of mechanism of action of this plant. Rhododendron arboreum can prove
as an effective and cheaper drug for various human diseases and isolation of individual phytochemical constituents
may proceed to find a novel drug.
Acknowledgments
The authors thankfully acknowledge the financial assistance by University Grants Commission, New Delhi, India
for carrying out this work.
REFERENCES
[1] Palombo EA; Semple SJ. J Ethno Pharmacol., 2001, 77, 151-157.
[2] Uniyal SK; Singh KN; Jamwal P; Lal B. J Ethnobiol. Ethnomed., 2006, 2, 1-14.
[3] Newman DJ; Cragg GM. J Nat Prod., 2007, 70, 461-77.
[4] Ferguson LR. Mutat Res., 2001, 475, 89-111.
[5] Steffen LM. Lancet., 2006.,367, 278-279.
[6] Vingtdeux V; Werringloer DU; Zhao H; Davies P; Marambaud P. BMC Neurosci., 2008,9:S6.
[7] Commenges D; Scotet V; Renaud S; Jacqmin-Gadda H; Barberger-Gateau P; Dartigues JF. Eur J Epidemiol.,
2000,16, 357-63.
[8] Mukherjee P; Kumar V; Mal M; Houghton PJ. Phytomedicine., 2007, 14, 289-300.
[9] Pradhan UC. Himalayan Plant J., 1985; 3(8), 110-123.
[10] Kiruba S; Mahesh M; Nisha SR; Paul ZM; Jeeva S. Asian Pac J Trop Biomed., 2011, S284-S286.
[11] Swaroop A; Gupta P; Sinha AK. Chromatographia., 2005, 62, 649-652.
[12] Sonar PK; Singh R; Khan S; Saraf SK. E-Journal Chem., 2012, 9(2), 631-636.
[13] Sonar PK; Singh R; Bansal P; Balapure AK; Saraf SK. Rasayan J Chem., 2012, 5(2), 165-172.
[14] Nisar M; Ali S; Qaisar M. Middle East J Sci Res., 2011, 10 (4), 472-476.
[15] Bhattacharjee SK. Handbook of medicinal plant; Pointer Publishers: India, 1998, 297-298.
[16] Bhandary MR; Kuwabata J. J Food Sci Tech Nepal., 2008, 4, 61-63.
[17] Kumar D; Arora S; Kumar M; Thakur MK; Singh AP. Int J Pharm Sci Res., 2014, 5(1), 165-170.
[18] Nisar M; Ali S; Qaisar M; Gilani SN; Shah MR; Khan I; Ali G. Bangladesh J Pharmacol., 2013, 8, 218-222.
[19] Verma N; Singh AP; Gupta A; Sahu PK; Rao CV. Ind J Pharmacol., 2011, 43(6), 689-93.
[20] Demule MCZ; Decaire GZ; Decano MS. Int J Exp Biol., 1996, 58, 93-96.
[21] Kim S; Jeong S; Park W; Nam K; Ahn DU; Lee S. Food Chem., 2006, 97, 472-479.
[22] Devi KV; Shanmugasundaran ; Mohan VR. Biosci Discovery., 2012, 3, 2229-3469.
[23] Rajeswari G; Murugan M; Mohan VR. Res J Pharma Biol Chem Sci., 2012, 3(4), 301-308.
[24] Okwu DE; Ighodaro BU. Der Pharma Chemica., 2010, 2(1), 261-272.
[25] Jubie S; Dhanabal1 SP. J Pharm Sci & Res., 2012, 4(6),1836 -1838.
[26] Lee YS; Kang MH; Cho YS; Jeong CS. Arch Pharm Res., 2007, 30, 436-443.
[27] Mishra PM; Sree A. Asi J Pl Sci., 2007, 6, 168-172.
[28] Hornby JM; Jensen EC; Lisec AD; Tasto JJ; Jahnke B; Shoemaker R; Dussault P; Nickerson KW. App Env
Microbiol., 2001, 67(7), 2982-2992.
[29] Udgire MS; Pathade GR. Asian J Plant Sci Res., 2013, 3, 55-59.
[30] Wang HX; Ng TB. Life Sci., 1999, 65, 2663-77.
[31] Moon DO; Kim MO; Choi YH; Kim GY. Cancer Lett., 2008, 264, 181-91.
[32] Sujatha S; Anand S; Sangeetha KN; Shilpa K; Lakshmi J; Balakrishnan A; Lakshmi BS. Int J Diabetes
Mellitus., 2010, 2, 101-109.
[33] Acharya K; Giri S; Biswas G. Int J PharmTech Res., 2011, 3(2), 757-762.
444