Probability and Random Processes With Applications to Signal Processing and Communications Scott L. Miller Professor Department of Electrical Engineering Texas A&M University Donald Childers Professor Emeritus Department of Electrical and Computer Engineering University of Florida ELSEVIER ACADEMIC PRESS Amsterdam • Boston • Heidelberg • London • New York • Oxford Paris • San Diego • San Francisco • Singapore • Sydney • Tokyo Contents Preface Introduction 1.1 A Speech Recognition System 1.2 A Radar System 1.3 A Communication Network XI 1 3 4 5 Introduction to Probability Theory 2.1 Experiments, Sample Spaces, and Events 2.2 Axioms of Probability 2.3 Assigning Probabilities 2.4 Joint and Conditional Probabilities 2.5 Bayes's Theorem 2.6 Independence 2.7 Discrete Random Variables 2.7.1 Bernoulli Random Variable 2.7.2 Binomial Random Variable 2.7.3 Poisson Random Variable 2.7.4 Geometric Random Variable 2.8 Engineering Application: An Optical Communication System . . . Exercises MATLAB Exercises 7 8 11 14 18 22 25 28 31 32 33 34 35 38 45 Random Variables, Distributions, and Density Functions 3.1 The Cumulative Distribution Function 3.2 The Probability Density Function 47 48 53 vi Contents 3.3 3.4 The Gaussian Random Variable Other Important Random Variables 3.4.1 Uniform Random Variable 3.4.2 Exponential Random Variable 3.4.3 Laplace Random Variable 3.4.4 Gamma Random Variable 3.4.5 Erlang Random Variable 3.4.6 Chi-Squared Random Variable 3.4.7 Rayleigh Random Variable 3.4.8 Rician Random Variable 3.4.9 Cauchy Random Variable Conditional Distribution and Density Functions Engineering Application: Reliability and Failure Rates Exercises MATLAB Exercises 57 63 63 64 65 66 67 67 68 69 69 71 77 82 86 Operations on a Single Random Variable 4.1 Expected Value of a Random Variable 4.2 Expected Values of Functions of Random Variables 4.3 Moments 4.4 Central Moments 4.5 Conditional Expected Values 4.6 Transformations of Random Variables 4.7 Characteristic Functions 4.8 Probability Generating Functions 4.9 Moment Generating Functions 4.10 Evaluating Tail Probabilities 4.11 Engineering Application: Scalar Quantization 4.12 Engineering Application: Entropy and Source Coding Exercises MATLAB Exercises 87 87 90 91 94 98 100 108 114 117 119 126 134 138 145 Pairs of Random Variables 5.1 Joint Cumulative Distribution Functions 5.2 Joint Probability Density Functions 5.3 Joint Probability Mass Functions 5.4 Conditional Distribution, Density, and Mass Functions 5.5 Expected Values Involving Pairs of Random Variables 5.6 Independent Random Variables 5.7 Jointly Gaussian Random Variables 5.8 Joint Characteristic and Related Functions 5.9 Transformations of Pairs of Random Variables 147 148 151 157 159 163 168 174 178 182 3.5 3.6 Contents 5.9.1 Method 1, CDF Approach 5.9.2 Method 2, Characteristic Function Approach 5.9.3 Method 3, Conditional PDF Approach 5.10 Complex Random Variables 5.11 Engineering Application: Mutual Information, Channel Capacity, and Channel Coding Exercises MATLAB Exercises vii 187 187 187 193 195 200 205 Multiple Random Variables 6.1 Joint and Conditional PMFs, CDFs, and PDFs 6.2 Expectations Involving Multiple Random Variables 6.3 Gaussian Random Variables in Multiple Dimensions 6.4 Transformations Involving Multiple Random Variables 6.4.1 Linear Transformations 6.4.2 Quadratic Transformations of Gaussian Random Vectors 6.4.3 Order Statistics 6.4.4 Coordinate Systems in Three Dimensions 6.5 Engineering Application: Linear Prediction of Speech Exercises MATLAB Exercises 207 207 209 211 215 216 Random Sequences and Series 7.1 Independent and Identically Distributed Random Variables . . . . 7.1.1 Estimating the Mean of IID Random Variables 7.1.2 Estimating the Variance of IID Random Variables 7.1.3 Estimating the CDF of IID Random Variables 7.2 Convergence Modes of Random Sequences 7.2.1 Convergence Everywhere 7.2.2 Convergence Almost Everywhere 7.2.3 Convergence in Probability 7.2.4 Convergence in the Mean Square (MS) Sense 7.2.5 Convergence in Distribution 7.3 The Law of Large Numbers 7.4 The Central Limit Theorem 7.5 Confidence Intervals 7.6 Random Sums of Random Variables 7.7 Engineering Application: A Radar System Exercises MATLAB Exercises 239 239 240 221 223 225 227 232 236 245 247 249 250 250 250 250 250 251 253 258 263 265 271 275 viii Contents 8 9 10 11 Random Processes 8.1 Definition and Classification of Processes 8.2 Mathematical Tools for Studying Random Processes 8.3 Stationary and Ergodic Random Processes 8.4 Properties of the Autocorrelation Function 8.5 Gaussian Random Processes 8.6 Poisson Processes 8.7 Engineering Application: Shot Noise in a p-n Junction Diode Exercises MATLAB Exercises Markov Processes 9.1 Definition and Examples of Markov Processes 9.2 Calculating Transition and State Probabilities in Markov Chains 9.3 Characterization of Markov Chains 9.4 Continuous Time Markov Processes 9.5 Engineering Application: A Computer Communications Network 9.6 Engineering Application: A Telephone Exchange Exercises MATLAB Exercises . . . 277 277 283 291 300 301 303 308 313 319 323 323 329 335 342 354 357 359 366 Power Spectral Density 10.1 Definition of Power Spectral Density 10.2 The Weiner-Khintchine-Einstein Theorem 10.3 Bandwidth of a Random Process 10.4 Spectral Estimation 10.4.1 Nonparametric Spectral Estimation 10.4.2 Parametric Spectral Estimation 10.5 Thermal Noise 10.6 Engineering Application: PSDs of Digital Modulation Formats Exercises MATLAB Exercises 369 370 373 380 382 383 390 394 Random Processes in Linear Systems 11.1 Continuous Time Linear Systems 11.2 Discrete Time Systems 11.3 Noise Equivalent Bandwidth 11.4 Signal-to-Noise Ratios 11.5 The Matched Filter 413 413 418 419 421 423 397 404 410 Contents 11.6 11.7 11.8 11.9 12 ix The Wiener Filter Bandlimited and Narrowband Random Processes Complex Envelopes Engineering Application: Noise in an Analog Communications System Exercises MATLAB Exercises Simulation Techniques 12.1 Computer Generation of Random Variables 12.1.1 Binary Pseudorandom Number Generators 12.1.2 Non-Binary Pseudorandom Number Generators 12.1.3 Generation of Random Numbers from a Specified Distribution 12.1.4 Generation of Correlated Random Variables 12.2 Generation of Random Processes 12.2.1 Frequency Domain Approach 12.2.2 Time Domain Approach 12.2.3 Generation of Gaussian White Noise 12.3 Simulation of Rare Events 12.3.1 Monte Carlo Simulations 12.3.2 Importance Sampling 12.4 Engineering Application: Simulation of a Coded Digital Communication System Exercises MATLAB Exercises 427 435 440 442 446 454 457 457 458 461 463 465 465 466 470 475 476 476 479 481 483 486 Appendices A Review of Set Theory B Review of Linear Algebra C Review of Signals and Systems D Summary of Common Random Variables E Mathematical Tables F Numerical Methods for Evaluating the Q-Function 487 487 491 499 505 517 525 Index 531
© Copyright 2026 Paperzz