MODIS Chlorophyll Fluorescence Ricardo Letelier, Mark Abbott, Jasmine Nahorniak Oregon State University Outline • Photosynthesis and fluorescence • Measurement and validation of chlorophyll natural fluorescence from space • Fluorescence and the estimation of sea surface chlorophyll concentration • Using fluorescence to estimate variability in phytoplankton quantum yield Weekly FLH Weekly chl_MODIS Use of FLH • Improve estimates of ocean Primary Production through: - Improving [chl] estimates in case II waters - Improving our capability to monitor the variability in the mean physiological state of algal assemblages in surface waters Light Harvesting, Fluorescence and Photosynthesis Light energy not used for photosynthesis is lost as heat and fluorescence Fp + Ff + Fh = 1 u 2 e- LHC ADP+P ATP Fluorescence ff heat fh NADP + 2H+ NADPH2 Blue light induced chlorophyll fluorescence in Tobacco leaf. A. photographed in white light. B. taken in the low steady state of fluorescence, 5 min after the onset of illumination. The bright red fluorescing upper part of the leaf is where photosynthesis has been blocked by the herbicide duiron (DCMU). (From Krause and Weis, 1988) u LHC e- PSI (ATP & NADPH2) L683 heat u DCMU PSI LHC (ATP & NADPH2) L683 heat Fp + Ff + Fh = 1 0.016 0.014 Chlorophyll absorption 0.012 0.008 Increase in fluorescence 0.006 0.004 0.002 450 500 550 600 Wavelength, nm FLH = Lu683 – Baseline Baseline = Lu1 - [(Lu1-Lu2)/(lLu2-lLu1)]*(683-lLu1) 650 700 0.8 Lu683 0.7 0.6 Lu1 0.5 FLH 0 400 Exitance, W m-2 µm-1 Lu/Es 0.01 0.4 0.3 0.2 Lu2 0.1 0 600 620 640 660 680 700 Wavelength, nm 720 740 760 Absorption spectra for water, CDOM, and phytoplankton absorption spectra 0.08 3.0 pure water pigments gelbstoff 2.0 0.04 1.5 1.0 0.02 0.5 0.00 0.0 400 500 600 wavelength (nm) 700 800 aw (m-1) ap, ag (m-1) 0.06 2.5 MODIS FLH bands: avoid oxygen absorbance at 687 nm Weighting factor used to compensate for offcenter FLH 0.6 0.6 9.9 9.9 0.55 Radiance, W m-2 µm-1 sr-1 D TOA spectra (10 - 0.01 mg) 9.4 9.4 0.5 0.5 0.01 mg 0.45 8.9 8.9 0.4 0.4 0.35 8.4 8.4 Band #14 0.3 0.3 7.9 7.9 0.25 1.4% 7.4 7.4 660 660 665 670 670 675 680 680 685 690 690 Wavelength, nm 695 700 700 705 0.2 710 0.2 710 Normalized band transmittance and difference between TOA Spectra, W m-2 m-1 sr-1 10 mg 0.14 100% 0.12 Radiance, W m-2 µm-1 sr-1 80% 0.1 70% FASE FLH 60% 0.08 50% 0.06 40% Actual Band 14 CW 0.04 30% % difference 20% 0.02 10% 0 0% 674 675 676 677 678 679 Wavelength, nm MODIS Specified Band 14 CW 680 681 682 % Difference between FASECODE FLH and LOWTRAN FLH 90% LOWTRAN FLH SNR sensitivity = 0.012 W m-2 mm-1 sr-1 Requires correction at low chl concentrations due to the convex behavior of the TOA signal between 667 and 683 nm (From Frank Hoge and Paul Lyon) FLH vs. chlorophyll FLH vs. CDOM GLOBEC NEP AUGUST 2002 GLOBEC NEP AUGUST 2002 In situ chl a, mg m-3 (July 31st – August 19th) MODIS chl a, mg m-3 Day x Day 218 MODIS_FLH day x+1 Day 217 Day 212 Day 213 Day 211 Day 212 MODIS_FLH day x GLOBEC NEP AUGUST 2002 FLH, W m-2 µm-1 sr-1 All cruise data Only pixels of passes within 5 hrs of sampling time [chl] = .021 + 43.4 FLH1.866 In situ chlorophyll, mg m-3 GLOBEC NEP AUGUST 2002 In situ chl chlFLH empirical (this study) chlFLH semi-analytical (Huot & Cullen assuming ff = 0.006) -Both FLH derived chl algorithms appear to slightly overestimate chl a fields. -They do not seem to reproduce the low values observed in situ. -Some of the differences between in situ and FLH derived could be due to time differences and sampling depth (in situ = 5 m depth) Natural (passive) Fluorescence • F [chl](PARa*)FF where F = fluorescence [chl] = chlorophyll concentration PAR = photosynthetically available radiation a* = chlorophyll specific absorption fF = fluorescence quantum yield • Absorbed Radiation by Phytoplankton ARP = a* x [chl] x PAR (calculated independently from [chl]) • F/ARP = Chl Fluor. Efficiency (CFE) fF • ARP / ([chl] x PAR) = a* Huot & Cullen’s approach • FLH = EPAR(0) [chl] aj*(512) Qa* j Cf Kfabs + af Where Qa* = aj*(678) / asol*(678) We have to assume j constant OSU Direct Broadcast October 04, 2001 MODIS_Chl MODIS data shows chl not always in spatial correspondence with fluorescence MODIS_FLH MODIS_CFE MODIS_ARP Physiological parameters also vary spatially m-2 mm-1 sr-1 ,W offshore Fisher and Kronfeld (1990) Assuming CFE = 0.003 inshore , mg m-2 5.0E-02 (Lu683-backscatter) / Chlest, (µW cm-2 nm-1) / mg m-3 4.5E-02 4.0E-02 3.5E-02 3.0E-02 2.5E-02 2.0E-02 1.5E-02 1.0E-02 5.0E-03 0.0E+00 0 10 20 30 40 Ed490, µW cm-2 nm-1 sr-1 50 60 In Situ Observations of F/[chl] suggest it can be a proxy for ff Initial slope proportional to fF 0.1 0.08 Qnp Ff 0.06 0.04 Ek 0.02 0 0 400 800 PAR, µmol quanta m-2 s-1 1200 1600 chlFLH empirical (this study) MODIS ARP Huot & Cullen ARP using in situ chl to Derive an average ff Thalassiosira weissflogii Chemostat results 2001-2002 0.6 0.4 After 3 days of constant cell counts 0.3 After 14 days Fv/Fm, n.d. 0.5 0.2 0.1 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0.05 0.045 9 AM CFE, r.u. 0.04 0.035 0.03 0.025 0.02 0.015 0.01 0.005 0 m/mmax , n.d. Where do we stand? • • • • Field observations suggest that MODIS FLH is a robust product. Preliminary comparison of [chl]field vs FLHMODIS suggest that FLH may prove of use to derive [chl] in turbid waters. However: - CFE was almost constant in the set of samples used in this study. Is this the range of values we should expect to see in natural environments? CFE validation requires that of FLH and ARP. In order to interpret CFE we need field and laboratory based work that explores the effect of environmental variability and phytoplankton specific composition. In other words: • FLH and CFE are very different MODIS products in terms of validation. - FLH is based on nLw at 678 nm after baseline correction - CFE is a proxy for Ff (a physiological parameter) that requires the previous validation of ARP ([chl] x a*). - Further use of Ff to infer Fp requires the characterization of the variability in energy distribution within the photosystem. Acknowledgments • Wayne Esaias (NASA/GSFC) • Bob Evans, Kay Kilpatrick & Howard Gordon (Univ. Miami) Fluorescence Product Flags • • • • • Bit Bit Bit Bit Bit 6 7 8 9 10 FLH/chloro_MODIS > 1 FLH/chloro_MODIS > 0.5 FLH > 2 FLH > 1 chloro = -1 • Bit 11 ARP quality ≥ 2 • Bit 12 ARP quality = 1 • Bit 13 CFE > 0.1 Flags • For FLH - 0 if 6-10 are clear - 1 if 7 and 9 are set but 6, 6, and 10 are clear - 2 if 6, 8, or 10 are set - 3 if any common flags are set • For CFE - 0 if common flags are clear and bits 11 and 12 are clear - 1 if bit 12 is set or FLH quality is 1 - 2 if bit 11 or bit 13 is set or FLH quality is 2 - 3 if any common flags are set or if CFE > 0.15 or if FLH quality is 3 End of talk Photoprotective:Photosynthetic pigment ratio 127 ° W 45 ° N 126 ° W 125 ° W 124 ° W 123 ° W New port 19 18 1.2 1.33871 23 24 22 1.13065 17 Heceta Head Latitude Coos Bay 43 ° N 1 PP/PS 0.8 Cape Blanco 0.6 16 Temperature (C) ° 44 N 0.922581 25 15 14 0.714516 13 23 0.506452 12 42 ° N 0.4 11 0.2 ° 41 N Longitude 0.298387 24 10 9 30 30.5 31 25 31.5 32 32.5 Salinity (ppt) 26 33 33.5 34 0.0903226 PP/PS Other alternatives : - Changes in ARP (We just finished analyzing the filter pad particulate absorption samples) - Heat dissipation processes not accounted for In situ Fv / Fm (proxy for Fp) FLH/chl vs. Fv/Fm as Function of SST 0.55 SST, °C 17.30 Fp + Ff + Fh= 1 0.50 16.34 0.45 15.39 0.40 14.43 0.35 13.47 0.30 12.51 0.25 0.20 0 0.05 0.1 0.15 0.2 0.25 0.3 MODIS FLH / chl, W m-2 µm-1 sr-1 (mg m-3)-1 0.35 11.55 (proxy for Ff)
© Copyright 2026 Paperzz