Deriving a Marginal Student-t Distribution Aaron A. D’Souza Assume that x is a Gaussian distributed random variable with a known mean µ but unknown precision (inverse variance) ψ. This unknown precision is distributed according to a Gamma distribution with order and scale a and b respectively: 1/2 ψ ψ 2 p(x|ψ) = exp − (x − µ) 2π 2 ba a−1 ψ exp (−bψ) p(ψ) = Γ(a) The marginal distribution of x is derived as follows: p(x) = Z p(x|ψ)p(ψ)dψ ba = Γ(a) ba Γ(a) 1 2π ψ a+1/2−1 1/2 1 2 exp − b + (x − µ) ψ dψ 2 Γ (a + 1/2) ia+1/2 h 2 b + 21 (x − µ) 1/2 Γ (a + 1/2) 1 ba = ia+1/2 h Γ(a) 2π 2 b + 21 (x − µ) # 1/2 " 2 −(a+1/2) 1 (x − µ) Γ (a + 1/2) 1+ = Γ(a) 2πb 2b = 1 2π 1/2 Z Hence the marginal distribution of x is a Student-t distribution with shape parameter a and scale parameter b. Figure 2 compares the conditional and marginal distributions of x under several Gamma distributions. 1 ψ ∼ Gamma(0.001, 0.001) 0.01 conditional and marginal 0.009 10 log p(x|ψ) log p(x) −1 10 0.008 0.007 log conditional and marginal 0.009 0.008 0.007 0.3 −2 10 0.006 p(ψ) 0.006 p(ψ) 0 0.01 p(x|ψ) p(x) 0.4 0.005 0.2 0.004 −3 0.005 10 0.004 −4 0.003 0.002 0.002 0.001 0 10 0.003 0.1 −5 10 0.001 0 2 4 ψ 6 8 10 0 −5 ψ ∼ Gamma(0.1, 0.1) 0.7 0 x 0 5 conditional and marginal 0.5 1 10 0 x 5 log conditional and marginal log p(x|ψ) log p(x) −1 10 0.5 0.3 −5 10 0.6 −2 10 p(ψ) 0.4 p(ψ) 0.4 10 0 0.7 p(x|ψ) p(x) 0.4 0.6 −6 0 10 log ψ 0.2 0.3 −3 10 0.3 −4 0.2 10 0.2 0.1 −5 0.1 0 0 2 4 ψ 6 8 10 0 −5 ψ ∼ Gamma(1, 1) 1 0 x 0 5 conditional and marginal 0.9 0.4 −6 0 10 log ψ 1 10 −5 10 0 x 5 log conditional and marginal log p(x|ψ) log p(x) 0.9 −1 10 0.8 0.7 10 0 1 p(x|ψ) p(x) 0.8 0.7 0.3 −2 10 0.6 p(ψ) 0.6 p(ψ) 10 0.1 0.5 0.2 0.4 −3 0.5 10 0.4 −4 0.3 0.1 0.2 0.2 0.1 0 10 0.3 −5 10 0.1 0 2 4 ψ 6 8 10 0 −5 ψ ∼ Gamma(10, 10) 1.4 0 x 0 5 conditional and marginal 1 1 10 0 x 5 log conditional and marginal log p(x|ψ) log p(x) −1 10 1 −2 10 p(ψ) 0.8 p(ψ) 0.8 −5 10 1.2 0.3 10 0 1.4 p(x|ψ) p(x) 0.4 1.2 −6 0 10 log ψ 0.2 0.6 −3 10 0.6 −4 0.4 10 0.4 0.1 −5 0.2 0 10 0.2 0 2 4 ψ 6 8 10 0 −5 0 x 5 0 −6 0 10 log ψ 1 10 10 −5 0 x 5 Figure 1: For the given Gamma distribution over ψ, we can compare the conditional and marginal distributions. Note that a higher variance Gamma distribution causes a greater smearing, resulting in a heavier tailed marginal distribution. 2
© Copyright 2026 Paperzz