Photocatalysis Fundamental and Applications Environmental Pollution Atmosphere pollution Green house effect (CO2) Acid rain Water pollution Soil pollution Air Pollution Smog Acid rain Burning of fossil fuels Water Pollution Waste water from textile industry Soil Pollution Contaminated soil Pesticides buried with strong odor Advanced Oxidation Technology O3/H2O2 O3/UV O3/CATALYSTS Fenton reaction (H2O2/Fe2+) Photo-Fenton reaction (H2O2/Fe2+/UV) H2O2/UV O3/H2O2/UV UV/TiO2 (Photocatalysis) •OH Nature’s Cleaner:•OH In Atmosphere: 1) O3+ h(λ < 320 nm) →O2(1∆g) + O (1D)O (1D) + H2O →2•OH 2) HONO + h(λ < 400 nm) →NO + •OH [•OH]avg∼106radicals cm-3 (< 0.1 ppt!!) In Water: 1) FeIII(OH)2+ (aq) + h(λ< 400 nm) →Fe2+ (aq) + •OH 2) NO3-(aq) + h →NO2+ OO-+ H2O →OH-+ •OH Oxidation Potentials of Common Chemical Oxidants Oxidation Potentials (V vs NHE) HO• O3 H2O2 HO2• ClO2 HOCl Cl2 2.80 2.07 1.78 1.70 1.57 1.49 1.36 What is Photocatalysis? The definition of photocatalysis is basically the acceleration of a photoreaction in the presence of a catalyst. Principle of TiO2 Photocatalysis UV light (< 387.5nm) O2 -0.5V H2O2 e- / H+ e- CB O2 3.2eV OH +2.7V h+ TiO2 1) O2-/O2 OH- . OH /OH- VB OH Hoffmann, M. S.; Martin, T.; Choi, W.; Bahnemann, D. W. Chem. Rev. 1995, 95, 69-96. Important Reactions during Photocatalysis TiO2 e- + O2 O2- + 2H+ + eH2O2 + O2h+ + H2O UV h+ + e- O2H2O2 •OH + OH- + O2 •OH + H+ Three Parameters Affecting Photocatalytic Activity Light absorption Property Light Rate absorption spectrum and coefficient of reduction and oxidation of reaction substrate by e- and h+, respectively Rate of e- and h+ recombination Enhancement of Photocatalytic Activity Enhancing interfacial charge-transfer Improving charge separation Inhibiting charge carrier recombination Common Semiconductor Photocatalyst TiO2 Why TiO2? Strong oxidizing power of valance band hole Excellent chemical and photochemical stability Availability: One of top 50 chemicals Band gap: 3.2 eV Only active under UV light (4% of the incoming solar energy) Crystal Structure of TiO2 Anatase Rutile Anatase is the most active one! Brookite Approaches to Improve the Activity of TiO2 To enlarge band gap by reducing crystal sizes (quantum size effect) To increase surface area (mesoporous structure) To reduce crystal defects ( high crystallinity ) To dope metal ions To deposit noble metal nanoparticles To couple two kinds of semiconductors Hot Research Topics of Photocatalysis How to enhance the efficiency Preparation of nanostructured photocatalysts Extension of absorption of TiO2 to the visible region Design of novel non-titania based visible Light photocatalysts Nanostructured Photocatalysts Nanocrystals Nanoporous materials Preparation Methods of Nanostructured TiO2 Thermal decomposition method Sol-gel method Microemulsion method Hydrothermal (or solvothermal) method Combustion method Other methods microwave nonhydrolytic sonochemical Approaches to Improve the Activity of TiO2 Photocatalytic Activity Enhancement by Noble Metal Deposition UV light (< 387.5nm) O2 H2O2 e- / H+ Au -0.5V e- CB O23.2eV OH O2-/O2 +2.7V h+ OH- VB TiO2 Inhibition of the recombination of h+ and e-! OH . OH /OH- Photocatalytic Activity Enhancement by Semiconductor Couples -0.5V e- CB CB +2.7V h+ VB VB TiO2 Inhibition of the recombination of h+ and e-! TiO2-based Photocatalysts Responding to Visible Light Sensitization of TiO2 Organic dyes Metal complexes Narrow band gap semiconductors Polymers Ion-doped TiO2 Metal ions Non-metal ions Sensitization of TiO2-Dye Dye* O2 H2O2 e- / H+ e- Visible light CB O2- Dye +2.7V VB OH Dye+• TiO2 This is also the fundamental of dye-sensitized solar cell! Sensitization of TiO2-Narrow BandGap Semiconductor O2 Visible light -0.5V e- / H+ H2O2 O2 e- CB e- CB h+ VB OH +2.7V VB TiO2 CdS band-gap:2.4eV O2-/O2 Environmental Applications Water Purification Water purification (Purifics environmental technologies) Air Cleaner Self-Cleaning Glass Photo-Induced Superhydrophilicity of TiO2 Coating UV Anti-Bacterial Materials 0 min 30 min 60 min Photo-Electricity Conversion Strategies of Solar Energy Conversions Fuel Light Electricity Fuels CO 2 Electricity O2 H 2 e e Sugar sc H2O M sc M H 2O O 2 Photosynthesis Semiconductor/Liquid Junctions Photovoltaics Traditional Silicon Solar Cell Gratzel Cell Dye Sensitized Solar Cell Gratzel, Nature 414, 338 (2001) Characteristics of Gratzel Cell Inexpensive 1/10 of amorphous silicon Flexible Efficiency not high enough Solid electrolyte Efficiency of Photovoltaic Devices 25 Efficiency (%) 20 15 10 5 1950 crystalline Si amorphous Si nano TiO2 CIS/CIGS CdTe 1960 1980 1970 Year 1990 2000 Water Splitting Utilizing Solar Energy -Hydrogen Production Water Splitting Utilizing Solar Energy 4H+ + 4e- 2H2 2H2O O2 + 4H+ + 4e- H2 O2 MSx e- MOx H+ cathode membrane anode 纳米二氧化钛光催化性能研究 实验目的 1. 了解纳米光催化材料的性质; 2. 确定纳米二氧化钛光催化降解罗丹明B水 溶液的反应速率常数; 3. 了解光催化剂催化性能评价的一般方法。 仪器与药品 分光光度计,离心机,电动搅拌器,光催化 反应器(自制),卤钨灯(220V 500W) 罗丹明B,纳米二氧化钛P25(德国Degussa 公司产品)。 实验步骤 1. 取罗丹明B水溶液100 mL置于光催化反应器(自制)中,加 入0.1 g P25,避光,开启冷凝水,搅拌。 2. 2 h后,取6 mL反应液,离心分离,测上层清液的吸光度 A0 。 3. 0.5 h后,取6 mL反应液,离心分离,测上层清液的吸光 度A0 ,将其与第2步测定的吸光度进行比较,判断罗丹 明B在催化剂上是否达到吸附平衡。 4. 确认罗丹明B在催化剂上是否达到吸附平衡后,打开卤 钨灯,每隔1 h取样6 mL反应液,离心分离,取上层清 液用分光光度法测定其吸光度A。 5. 实验完毕,关闭卤钨灯,停止搅拌,清洗反应器,将仪 器恢复原位,桌面擦拭干净。 注 释 1.数据处理 lnA对t作图,求出k及t1/2 。 2.注意事项 实验前仔细阅读离心机说明书,使用时 一定要遵守操作规程。 思考题 1.如何确定光催化剂的暗态吸附达到稳定时间? 2.简述TiO2做为光催化剂降解有机污染物 的原理。 3.欲提高TiO2的光催化活性,你认为可采取哪些措施? 参考文献 [1] Fujishima A,Honda K. Nature[J]. 1972,37:238~239. [2] Piscopo A,Robert D,Weber J V. Journal of Photo chemistry and Photobiology A: Chemistry[J]. 2001,139 (2):253~256. [3] 李越湘,吕功煊,李树本等. 分子催化[J]. 2002, 16(4):241~246. [4] 黄东升,陈朝凤,李玉花,曾人杰.无机化学学报[J]. 2007 ,4(4):738~742. [5] 张立德,牟季美. 纳米材料和纳米结构[M]. 北京:科学出版 社,2001.
© Copyright 2026 Paperzz