( ) Talking about my : theory, applications and challenges CNR-INFM National Research Center, Modena, 23/01/2007 Ferrari 360 “Modena” http://en.wikipedia.org/wiki/Ferrari_360 Cilindrata: 3600 Cm3, Cilindri: 8 a V Trazione: posteriore, Motore: posteriore longitudinale Velocita' max: 300 km/h, Potenza max: 400 CV Andrea Marini http://www.fisica.uniroma2.it/~marini ( My = Developers & Users Users )? Performance: 200 Atoms 160 Gb BS matrices extensive parallelization Building 1: Direction, C command line, on-fly variables selection Building 2: GW (plasmon pole and real axis) 5 Building 3: Bethe-Salpeter Building 4: TDDFT, linear response , ALDA (reciprocal and real space) and beyond 4 Available on Subversion Repository 2 Building 5: Total energy, ACFDT Project Building 6: DFT, OEP and Generalize Kohn-Sham 3 Project Building 7: BSE, Cut-Offed Hartree Potential Project Building 8: Collinear and not collinear SPIN extension 1 Project Building 10: Surface EELS and RAS Project Building 9: Electron Phonon interaction (Finite temperature formalism) Surface Spectroscopy SELF Modules Detector modelling Real space dielectric functions Kinematics & scattering Standard & advanced models of loss function Reflection Electron Energy Loss Spectroscopy (REELS) GaAs(001)-c(4x4) Surface geometry analysis Real space spectral decomposition Reflection Anisotropy Spectroscopy (RAS) Computation of reflection electron energy loss via integration of slab dielectric function in real space: (q-dependent, spatial dependence) Density Functional Theory (Exc) The Adiabatic Connection Fluctuation Dissipation theory Structure of layered materials: interesting case Covalent bonds coexist with van der Waals forces LDA underbinds the layersbut works gret near equilibrium distance GGA (like EXX/LDA) fails Small energy differences deq =6.24 a.u. h-BN AM, P. Garcia Gonzalez, A. Rubio; PRL 96, 136204 (2006) Density Functional Theory (Exc) h-BN Fluctuation-Dissipation Theorem Adiabatic-Connection FDT functional (ACFDT): Exchange and correlation must be treated at the same level (GGA, EXX + LDA/GGA will not work) AM, P. Garcia Gonzalez, A. Rubio; PRL 96, 136204 (2006) Density Functional Theory (Vxc) The band-gap problem ● In theory: KS band gap differs from energy gap ● In practice: LDA 30-50% too small EXX depends on the system Hybrids/SX” promising results Density Functional Theory (Vxc) Beyond LDA (OEP) Optimized effective potential method What is the effect of long range correlation? Niquet et al. PRB 70, 245115 (04) Calculated derivative discontinuity: 3050% of the band gap By adding it to the EXX+RPA band gap the we get good band gap M. Grüning, AM and A. Rubio JCP124, 154108 (06) Density Functional Theory (Vxc) Beyond LDA (GKS) Generalized Kohn-Sham method What is the effect of the spatial nonlocality? Seidl et al. PRB 53, 3764(96) Non locality is crucial to reduce the derivative discontinuity Does it exist a LOCAL OEP potential that yields the correct band-gap ? M. Grüning, AM, and A. Rubio PRB 74, 161103(R) (06) Density Functional Theory (fxc) The exciton problem Onida, Reining and Rubio, Rev. Mod. Phys. 74, 601 (2002) Exact-Exchange Kim Gorling, PRL 89, 096402 Many-Body functionals . Sham Schluter, PRL 51, 1888; Tokatly Pankratov PRL 86 2078; Many-Body functionals a la' TDDFT, Ulf von Barth, PRB 72, 235109 (2005). The “Response function” approach”, Reining, Olevano, Rubio, Onida PRL 88, 066404. Sottile, Olevano, Reining, PRL 91, 056402. The polarization function approach Hp . (1) Hp . (2) AM, R. Del Sole, Phys. Rev. Lett., 91, 176402 (2003). Density Functional Theory (fxc): Bound excitons Resonant Causal ` AM, R. Del Sole, Phys. Rev. Lett., 91, 176402 (2003). TDDFT BSE Experiment QP-RPA SELF and the Many-Body World QUASIPARTICLES Energy Levels: PRL 88, 016403 Lifetimes: PRB 66, 161104(R) EXCITONS Memory Effects: PRL, 91, 256402 Complex Materials: PRL 94, 087404 (2005), PRL 96, 126104 (2006), PRL 98, 036807 (2007). The polarization function: a two body problem light The BSE is not solvable in the space of single-time Green's functions AM, R. Del Sole PRL, 91, 25640 (2003) S(tatic)BSE Static approximation for W(t) The BSE: a O(NxN) problem S(tatic)BSE PRB, 67, 085307 (2003) Haydock Recursive Method to calculate G0 G0 ≡〈 u 0∣−H −1∣u 0 〉 a0=〈 u 0∣H∣u0 〉 b0=0 b1 =∥ H−a0 u0∥1/ 2 u1 =H−a0 / b1 u0 a1 =〈 u1∣H∣u1 〉 Gn =[−a n −b2n1 Gn1 ]−1 b2=∥ H− a1 u1 −b 1 u0∥1/ 2 u2=[ H−a1 u1− b1 u0 ]/ b 2 a1 =〈 u1∣H∣u1 〉 b3 a2 Surfaces: Si(100) and C(100)2x1 H Si Si H Si M.Palummo, AM, et al., in preparation Si Y. Borenzstein et al. PRL 2005 200000x200000 Bethe-Salpeter Hamiltonian (160 Gb disk space) C(100) Surface: M. Palummo, O. Pulci, R. Del Sole, AM, et al., Phys. Rev. Lett., 94, 087404 (2005). Surface exciton with 1 eV, binding energy. The strongest ever observed for semiconductor surfaces The neglection of excitonic effects leads to a RAS qualitatively and quantitatively wrong. Crucial excitonic effects below and above the surface gap (4 eV). BN nanotubes: dimensionality effects L. Wirtz , AM, A. Rubio, PRL 96, 126104 (2006) Strong exciton localization. The strong exciton localization dictates the fast convergence of its binding energy to the sheet value. The absolute position of the 1st excitonic peak is almost independent of the tube radius. Intrigiung (but efficent) cancellation of the excitonic and quasiparticle gap correction. From Si Nanowires to porous Silicon M. Bruno, M. Palummo, AM, R. Del Sole, S. Ossicini Phys. Rev. Lett. 98, 036807 (2007). Size and orientation dependent selfenergy corrections. Huge excitonic dimensionality). Clear difference between the measured optical and the GW QP gaps. Crucial excitonic effects. PS modelized using a gaussian distribution of Si nanowires. effects (reduced “ SELF, a shiny pot of fun and happiness” [C. Hogan]
© Copyright 2026 Paperzz