We b s o f t R e s e a rc h G ro u p , Na n j i n g Un i v e r s i t y ws.nju.edu.cn SView 0.2 融合 2013-04-09 [email protected] 龚赛赛 We b s o f t Re s e a rc h G ro u p , Na n j i n g Un i v e r s i ty ws.nju.edu.cn Contents 系统功能 问题描述 现有研究工作 [email protected] 龚赛赛 2 We b s o f t Re s e a rc h G ro u p , Na n j i n g Un i v e r s i ty ws.nju.edu.cn [email protected] 龚赛赛 3 We b s o f t Re s e a rc h G ro u p , Na n j i n g Un i v e r s i ty ws.nju.edu.cn 系统功能 用户根据自己的偏好,将属性(resp. 实体) 合并,形成属性(resp. 实体)的划分 浏览融合后的数据 帮助SView融合数据 SView的目标 保证每个用户个性化的划分 ----Finished 从用户的划分集合中挖掘一致(consensus)的划 分 ----TODO [email protected] 龚赛赛 4 We b s o f t Re s e a rc h G ro u p , Na n j i n g Un i v e r s i ty ws.nju.edu.cn 问题描述 符号说明 X : a set of n elements, Ρ : the set of all the partitions of X, Π P : a profile of m partitions, here m is user num (i ) : the class that x X belongs to in i [email protected] 龚赛赛 5 We b s o f t Re s e a rc h G ro u p , Na n j i n g Un i v e r s i ty ws.nju.edu.cn 问题描述 Consensus of partition: find a partition P(central partition ) best summarizes the profile according to a specific criterion Use a metric between partitions S(P,Q) Optimize 在SView上下文中的差异 Profile中每个划分是partial的 [email protected] 龚赛赛 6 We b s o f t Re s e a rc h G ro u p , Na n j i n g Un i v e r s i ty ws.nju.edu.cn 现有研究工作 Axiomatic approach Central partition satisfy conditions from experimental evidence and others Constructive approach A way to construct consensus is explicitly given Combinatorial optimization problem Based on some criterion measuring the remoteness of partitions [email protected] 龚赛赛 7 We b s o f t Re s e a rc h G ro u p , Na n j i n g Un i v e r s i ty ws.nju.edu.cn Combinatorial optimization problem Remoteness of partitions O(n) to O(n^3) Symmetric difference distance between relations of partition Minimum number of elements deleted so that two induced partitions are identical Minimum number of elements moved between clusters so that resulting partition equals ( this num equals above) …… Consensus of partition is NP-hard 当n不太大时,可用分支限界算法得到最优解 [email protected] 龚赛赛 8 We b s o f t Re s e a rc h G ro u p , Na n j i n g Un i v e r s i ty ws.nju.edu.cn Combinatorial optimization problem NP-hard 证明简述 使用对称差作为距离度量 P ( i ) P ( j ) 1当且仅当xi 和x j 在P中join 优化目标: [email protected] 龚赛赛 9 We b s o f t Re s e a rc h G ro u p , Na n j i n g Un i v e r s i ty ws.nju.edu.cn Combinatorial optimization problem NP-hard 证明简述(续) 优化目标等价为; Tij :the number of partitions in which two elements xi and x j are joined 优化目标转换为: * R(P) : the set of joined pairs in P [email protected] 龚赛赛 10 We b s o f t Re s e a rc h G ro u p , Na n j i n g Un i v e r s i ty ws.nju.edu.cn Combinatorial optimization problem NP-hard 证明简述(续) 构造X上完全图K n 并赋予边权重w(i,j) = Tij - m/2 划分P有p个类 ,每个类对应了K n 的一个团 (clique),并且每个团权重为其子图对应边权重之和 优化目标转换为: 带权团划分问题(NP-hard) [email protected] 龚赛赛 11 We b s o f t Re s e a rc h G ro u p , Na n j i n g Un i v e r s i ty ws.nju.edu.cn Combinatorial optimization problem 启发式算法 Regnier’s Transfer method and its optimization 基于hill climbing …… Fusion-Transfert(FT) method Alain Guenoche. Consensus of partitions : a constructive approach. Advances in Data Analysis and Classification. 2011 [email protected] 龚赛赛 12 We b s o f t Re s e a rc h G ro u p , Na n j i n g Un i v e r s i ty ws.nju.edu.cn Fusion-Transfert(FT) method [email protected] 龚赛赛 13 We b s o f t Re s e a rc h G ro u p , Na n j i n g Un i v e r s i ty ws.nju.edu.cn Fusion-Transfert(FT) method Hierarchical procedure [email protected] 龚赛赛 14 We b s o f t Re s e a rc h G ro u p , Na n j i n g Un i v e r s i ty ws.nju.edu.cn Fusion-Transfert(FT) method Transfer procedure { x } P [email protected] 龚赛赛 { } Q 15 We b s o f t Re s e a rc h G ro u p , Na n j i n g Un i v e r s i ty ws.nju.edu.cn Fusion-Transfert(FT) method 时间复杂度 实验 [email protected] 龚赛赛 16 We b s o f t Re s e a rc h G ro u p , Na n j i n g Un i v e r s i ty ws.nju.edu.cn [email protected] 龚赛赛 17
© Copyright 2026 Paperzz