Workshop on Functional Analysis Alhucemas 2014 September, 12th-13th, 2014 (f, g)-Boyd-Wong Contraction Mappings in Probabilistic Metric Space Abderrahim Mbarki1 , Abedelmalek Ouahab2 , Tahiri Ismail3 ABSTRACT The purpose of this talk is to present some results on common fixed point theory in probabilistic metric space proved by A. Mbarki, A. Ouahab and I. Tahiri [A. Mbarki, A. Ouahab, I. Tahiri. (f, g)-Boyd-Wong Contraction Mappings in Probabilistic Metric Space, Applied Mathematical Sciences, Volume (7), no. 13, 623-632, 2013]. Let f , g and h are three self maps on a probabilistic metric space, in this paper we introduce the notions of (f, g)-Boyd-Wong contraction map, (f, g)-orbit of h starting at a point and we give some conditions of which f , g and h have a coincidence point and a unique common fixed point. Our main result is Theorem 0.1 Let K be a subset of a complete probabilistic metric space (X, F, τ ) where RanF ⊂ D+ and let h, f , g are three self maps on K which the following conditions (i), (ii) and (iii) are satisfied (i) h(K) or f (K) or g(K) is complete; (ii) There exist x0 ∈ K such that an (f, g)-orbit of h starting at x0 is bounded; (iii) h is (f, g)-Boyd-Wong contraction. Then, there exist u, v, z ∈ K such that f u = hu = z = hv = gv. If in addition (h, f ) and (h, g) are weakly compatible, then z is the unique common fixed point of h, f and g. References [1] A. Mbarki. Quelques aspects de la th´eorie du point fixe pour les semigroupes, Thèse de Doctorat en Sciences, Faculté des Sciences, Oujda, Maroc, 2001. [2] B. Schweizer and A. Sklar. Probabilistic Metric Spaces. North-Holland, New York. (1983). [3] M. Elamrani, A. Mbarki and B. Mehdaoui. Nonlinear contractions and semigroups in general complete probabilistic metric spaces, Panam. Math. J. Volume (11), no.4, 79-87, 2001. [4] A. Ouhab, S. Lahrech, S. Rais, A. Mbarki and A. Jaddar. Fixed Point Theorems in General Probabilistic Metric Spaces, Applied Mathematical Sciences. Volume (1), no. 46, 2277-2286, 2007. [5] H. Sherwood. Complete probabilistic metric spaces, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete. Volume (20), 117-128, 1971/72. [6] S. Zhang, Q. Zhu and Y. Song. Alternating Picard itearates for hybird BoydWong contractions, Int. Journal of Math. Analysis. Volume (2), no. 12, 563-568, 2008. 1 National school of Applied Sciences P.O. Box 669, Oujda University, Morocco MATSI Laboratory. email [email protected] 2 Department of Mathematics Oujda University, 60000 Oujda, Morocco MATSI Laboratory email [email protected] 2 Department of Mathematics Oujda University, 60000 Oujda, Morocco MATSI Laboratory email [email protected]
© Copyright 2025 Paperzz