Improving the crops water use efficiency: From Ecophysiology to Biotechnology and backwards Medrano H.; Pou A.; Tomàs M.; Martorell S.; Escalona, JM.;Gulias, J.; and Flexas J. Research Group on ‘PLANT BIOLOGY UNDER MEDITERRANEAN CONDITIONS’ Universitat de les Illes Balears - IMEDEA Palma de Mallorca, SPAIN BUT, the increase in crop production is clearly linked to the increase of irrigated cropping areas Water scarcity: First limiting factor of crop yield High water demand crops + wide (and increasing ) crop extension under irrigation High water volume needed for irrigation: ( >70% Human Available Water THE SUSTAINABILITY OF AGRICULTURE (FOOD PRODUCTION) DEPENDS ON THE IMPROVEMENT OF WATER USE EFFICIENCY Climatic Change: Global warming => Higher ETP (because higher T) +Lower rain ? +Higher unpredictability of rainfall episodes Thus crop production will be even more dependent on irrigation Winter Summer IPCC Report 2007 Moreover, THE WATER FOOTPRINT ISSUE It’s gaining importance as subject for food sustainability information Green + blue + grey water volumes for a food unit On average, producing one tomato (assuming it to be equal to 100g) evaporates 1.4 liters of green water 6.1 liters of blue water 0.7 liters of grey water totalling 8.2 litres per tomato (Chapagain and Orr, 2008). ). Apple: Global average water footprint: 70 liters for one apple. We assume here a hundred-grams apple. One glass of apple juice (200 ml) costs about 190 liters of water. UK Institute for Food and Dood Research. US Apple Association http://www.waterfootprint.org/?page=files/productgallery&products IMPROVING WUE, A MANDATORY OF THE UNITED NATIONS ORGANIZATION More production with less water (‘more crop per drop’) INCREASING PRESENCE OF THIS SUBJECT IN THE SCIENTIFIC LITERATURE Search: Water AND use AND efficiency Number of papers 8000 6000 4000 2000 20 12 20 10 - 20 10 20 05 - 20 05 20 00 - 20 00 19 95 - 19 95 19 90 - 19 90 80 - 19 19 00 - 19 80 0 Time span Source: ISI Web of Knowledge; Web of Science (13th September 2012 FROM ECOPHYSIOLOGY Two main ways to improve WUE Photosynthesis 3 Maximizing crop photosynthesis Genetic improvement Biotechnology 1 2 Reducing gs (water consume) -Soil and crop management -Regulated deficit irrigation (RDI) Stomatal conductance … BUT, HOW TO ACHIEVE THEM? THE CO2 FLUX FROM ATMOSPHERE TO CARBOXYLATION SITE RUBISCO MESOPHYLL CONDUCTANCE STOMATAL CONDUCTANCE CO2 H2O gm shows important differences between and within species and groups Increasing crops WUE through increases in the mesophyll conductance WHICH FACTORS DO INFLUENCE THE MESOPHYLL CONDUCTANCE? MORPHOLOGICAL FACTORS 0,5 EVERGREENS PRESENT LOWER MESOPHYLL CONDUCTANCES TO CO2 0,4 ? -2 -1 gm (mol CO2 m s ) 0,4 0,3 0,2 0,3 0,2 evergreens Evergreens 0,0 deciduous Deciduous 0,0 semi-deciduous Semi-deciduous 0,1 herbaceous Wild herbs 0,1 crops Crop herbs gm (mol CO2 m-2 s-1) 0,5 LMA SETS THE MAXIMUM LIMITS OF gm 0 100 200 300 400 500 LMA (g m-2) LMA = THICKNESS x DENSITY Flexas et al. (2008) Plant Cell Environ. 31, 602-622 Literature survey of 84 species under non-stressing conditions 600 IN WHAT WAY, gm is related with WUE? AN = gs (Ca – Ci) = gm (Ci – Cc) AN can be increased by increasing gs, gm or both But increasing gs would result in decreased AN / gs, i.e., decreased intrinsic water-use-efficiency (WUE) AN / gs = gm / gs (Ci – Cc) Therefore increasing gm / gs should favour increased AN / gs, i.e., increased WUE) MESOPHYLL conductance shows important variations among grapevine cvars both under irrigation and water stress 0,25 gm (mol CO2 m-2 s-1) Irrigated Drought 0,20 0,15 0,10 0,05 llo Te m pr an i Sy ra h re na ch e M al va M si an a to N eg ro R ic ht er 11 0 C al le t G C ab e rn et S. 0,00 CULTIVAR and some cvars are less affected by water stress Tomas et al., 2012 and Effectivelly, higher gm/gs corresponds ……………………………………..to higher WUE AN/gs (µmol CO2 mol H2O-1) 140 CBS GS TS MS RS CBR GR TR MR RR 120 100 80 r ²=0.90 60 40 0.0 0.5 1.0 1.5 gm/gs 2.0 2.5 3.0 Thomas et al. 2012 AS HAS BEEN ALSO SHOWN IN TOMATO (TR) Increasing crops WUE through increases in the mesophyll conductance 160 R2 = 0.762 140 -1 AN/gs (mol CO2 mol H2O) 7 Balearic local genotypes of tomato + 1 commercial variety 2 water treatments 120 100 80 60 40 0,0 0,5 1,0 1,5 2,0 2,5 3,0 gm/gs Drought gm/gs gm/gs as a useful breeding target to improve WUE Galmés et al. (2011) Plant Cell Environ 34, 245-260 -TO BIOTECHNOLOGY IMPROVING WUE BY BIOTECHNOLOGY WAYS METABOLIC CANDIDATES FOR RAPID CHANGES IN gm - Carbonic anhydrase (Gillon and Yakir 2000 Plant Physiol. 123, 201-213) - Aquaporins (Flexas et al. 2006 Plant J. 48, 427-439) - Others (Flexas et al. 2008 Plant Cell Environ. 31, 602-622) -TO BIOTECHNOLOGY IMPROVING WUE BY BIOTECHNOLOGY WAYS Improving CO2 diffussion inside the leaf AQUAPORINS OVERCOMING LEAF CO2 DIFFUSION LIMITATIONS Increasing crops WUE through increases in the mesophyll conductance PLASMA MEMBRANE INTRINSIC PROTEINS - AQUAPORINS AS W T OX PIP1 TRANSFORMED TOBACCO PLANTS Western blot of PIP1 expression TRANSFORMING FOR OVEREXPRESSION OF AQUAPORINS …. A TARGET TO IMPROVE WUE GENOTYPE gm (mol CO2 m-2 s-1) AN (mmol CO2 m-2 s-1) WT 0.322 0.020 b 18.5 0.6 b AS 0.176 0.012 a 17.2 0.9 a OX 0.401 0.045 c 21.9 0.8 c Flexas et al. (2006) Plant J 48, 427-439 Overexpression of AQPs in TOMATO, …… Results in increases the plant production …….and the leaf WUE WUE (An/E) CONTROL Higher AQP Control exp 4,3 4,9 +(50mMNaCl) 6,3 8,2 Sade et al. 2010. Plant Physiol. -TO BIOTECHNOLOGY IMPROVING WUE BY BIOTECHNOLOGY WAYS Improving CO2 assimilation: RUBISCO SPECIFICITY FACTOR Rubisco specificity factor: the CO2 capture CO2 CARBOXYLATION OXYGENATION vc [CO2 ] vo [O2 ] O2 c kcat Kc o kcat Ko PRODUCTIVITY Crepis triasii Digitalis minor var minor Digitalis minor var palauii Helleborus foetidus Paeonia cambessedesii Pistacia lentiscus Hypericum balearicum Kundmannia sicula Pimpinella bicknelli Beta maritima Beta vulgaris subsp marcosii Urtica membranacea Urtica atrovirens subsp bianorii Cistus albidus Phlomis italica Rhamnus alaternus Rhamnus ludovici-salvatoris Limonium virgatum Limonium gibertii Limonium magallufianum Mentha aquatica Lysimachia minoricensis Lavatera maritima Diplotaxis ibicensis Normalized Rubisco tat 25ºC Rubisco specificity factor (t ) 1. There is genetic variability in tamong species of arid habitats 2. L. gibertii presents the highest value of tever found in higher plants 115.000 110.000 105.000 100.000 95.000 90.000 85.000 Galmés et al. (2005) Plant Cell Environ. 28, 571-779 OVERCOMING RUBISCO LIMITATIONS Nicotiana tabacum 250 200 Red algae SC/O 150 Diatom 100 Limonium gibertii Higher plant Fern 50 Triticum aestivum Cyanobacteria Green algae Proteobacteria 0 0 2 4 6 c -1 kcat (s ) 8 10 Galmés et al. (unpublished) L. gibertii rubisco: simulation in transformed tobacco and wheat Different tcould be due to changes in: Kc Vc Ko Vo Potential photosynthesis increase (%) Tobacco Wheat 26 11 Cc = 7 mM, Oc = 265 mM 30 12 16 6 5 2 L. gibertii rubisco: simulation in transformed tobacco and wheat BUT…. under drought Different tcould be due to changes in: Kc Vc Ko Vo Potential photosynthesis increase (%) Tobacco Wheat 187 45 190 45 Cc = 1.7 mM, Oc = 265 mM 181 38 135 32 Modeling after Farquhar et al. (1980) Vc,max for Vitis (Schultz, 2003, Funct. Plant Biol. 30, 673-687) Rubisco Engineering AN (mol CO2 m-2 s-1) 20 Current Vitis Limonium , Vc,max 80 15 10 5 0 0.00 0.05 0.10 0.15 -2 0.20 0.25 -1 gs (mmol CO2 m s ) Using gs, Cc and Temperature data from Flexas et al. (2002) Funct. Plant Biol. 29, 461-471 Vc,max for Vitis (Flexas et al., 2006, Physiol. Plantarum. 127, 343-352) Rubisco Engineering AN (mol CO2 m-2 s-1) 30 25 Current Vitis Limonium , Vc,max 80 Limonium , Vc,max 100 20 15 10 5 0 0.00 0.05 0.10 0.15 -2 0.20 0.25 -1 gs (mmol CO2 m s ) Using gs, Cc and Temperature data from Flexas et al. (2002) Funct. Plant Biol. 29, 461-471 Vc,max for Limonium gibertii (Galmés et al., unpublished) Rubisco Engineering AN (mol CO2 m-2 s-1) 35 30 25 Current Vitis Limonium , Vc,max 80 Limonium , Vc,max 100 Limonium , Vc,max 120 20 15 10 5 0 0.00 0.05 0.10 0.15 -2 0.20 0.25 -1 gs (mmol CO2 m s ) Using gs, Cc and Temperature data from Flexas et al. (2002) Funct. Plant Biol. 29, 461-471 Replacing Vitis by Limonium Rubisco could seriously increase the WUE more under water stress AN / gs (mol CO2 mol-1 H2O) Rubisco Engineering 300 Current Vitis Limonium , Vc,max 80 250 Limonium , Vc,max 100 Limonium , Vc,max 120 200 150 100 50 0 0.00 0.05 0.10 0.15 -2 0.20 0.25 -1 gs (mmol CO2 m s ) If this was combined with higher aquaporine expression, higher WUE could be expected Does the higher specificity factor in Limonium lead to increased WUE? -1 AN/gs (mol CO2 mol H2O) 110 100 b c 90 80 b b a 70 60 WES WESS HE SDS d a a b a a a 50 a a a a 40 < 30% 30-60% 60-90% > 90% gs range (% with respect to species maximum) Medrano et al. 2009 103 10-3 m mm 10-6 10-9 10-12 mm Gene Dimension (m) 1 km Hour Gene expression 10-6 10-3 1 103 Time (s) Week Year Century 106 109 1012 CONCLUSIONS -THE IMPROVEMENT OF WUE IS AN UNAVOIDABLE OBJECTIVE FOR FARMERS AND RESEARCHERS -ECOPHYSIOLOGICAL STUDIES OF PLANT WATER ECONOMY SHOWS INTERESTING WAYS TO EXPLORE FOR FUTHER WUE IMPROVEMENTS -BIOTECHNOLOGY OFFERS AN EXCITIONG WAY TO IMPROVE THE PLANT WUE ONCE SPECIFIC TARGETS FOR TRANSFORMATION ARE INDENTIFIED -AQUAPORINS AND SPECIFIC FACTOR OF RUBISCO ARE TWO INTERESTING TARGETS TO BE EXPLORED IN NEAR FUTURE Cheers!! Spanish Ministry of Science Research Group on ‘PLANT BIOLOGY UNDER MEDITERRANEAN CONDITIONS’ Universitat de les Illes Balears - IMEDEA Palma de Mallorca, SPAIN
© Copyright 2026 Paperzz