Visualizations Label Correcting Algorithm An Example ∞ ∞ 2 4 2 3 Initialize d(1) := 0; d(j) := ∞ for j ≠ 1 0 6 1 3 3 1 ∞ ∞ 7 -2 5 3 2 4 3 -4 3 ∞ 6 ∞ In next slides: the number inside the node will be d(j). Violating arcs will be in thick lines. 2 2 ∞ ∞ 3 3 Generic Step 6 0 -2 ∞ 3 An arc (i,j) is violating if d(j) > d(i) + cij. 3 3 1 2 4 ∞ -4 ∞ 3 ∞ Pick a violating arc (i,j) and replace d(j) by d(i) + cij. 3 2 ∞ 3 3 Generic Step 6 0 -2 ∞ 6 3 An arc (i,j) is violating if d(j) > d(i) + cij. 3 3 1 2 4 ∞ -4 ∞ 3 ∞ Pick a violating arc (i,j) and replace d(j) by d(i) + cij. 4 2 ∞ 3 3 Generic Step -2 6 0 ∞ 6 3 An arc (i,j) is violating if d(j) > d(i) + cij. 3 3 1 2 4 ∞ 3 -4 3 ∞ Pick a violating arc (i,j) and replace d(j) by d(i) + cij. 5 2 ∞ 5 3 3 Generic Step -2 6 0 ∞ 6 3 An arc (i,j) is violating if d(j) > d(i) + cij. 3 3 1 2 4 -4 3 3 ∞ Pick a violating arc (i,j) and replace d(j) by d(i) + cij. 6 2 5 3 3 Generic Step -2 6 0 ∞ 6 4 3 An arc (i,j) is violating if d(j) > d(i) + cij. 3 3 1 2 4 -4 3 3 ∞ Pick a violating arc (i,j) and replace d(j) by d(i) + cij. 7 2 5 3 3 Generic Step -2 6 0 ∞ 6 4 3 An arc (i,j) is violating if d(j) > d(i) + cij. 3 3 1 2 4 -4 3 3 ∞ 6 Pick a violating arc (i,j) and replace d(j) by d(i) + cij. 8 2 5 3 3 Generic Step -2 6 0 ∞ 4 6 3 An arc (i,j) is violating if d(j) > d(i) + cij. 3 3 1 2 4 ∞ 2 3 3 -4 6 Pick a violating arc (i,j) and replace d(j) by d(i) + cij. 9 2 5 3 3 Generic Step -2 6 0 ∞ 9 4 3 An arc (i,j) is violating if d(j) > d(i) + cij. 3 3 1 2 4 3 -4 2 6 Pick a violating arc (i,j) and replace d(j) by d(i) + cij. 10 2 5 3 3 Generic Step -2 6 0 4 3 An arc (i,j) is violating if d(j) > d(i) + cij. 3 3 1 9 2 4 3 -4 2 6 Pick a violating arc (i,j) and replace d(j) by d(i) + cij. No arc is violating The distance labels are optimal We now show the predecessor arcs. 11 MITOpenCourseWare http://ocw.mit.edu 15.082J / 6.855J / ESD.78J Network Optimization Fall 2010 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.
© Copyright 2026 Paperzz