A Possible Alternative to IRI-2001

Fourth European Space Weather Week
5-9 Nov. 2007
TEC FORECASTING DURING DISTURBED
SPACE WEATHER CONDITIONS:
A POSSIBLE ALTERNATIVE TO THE IRI-2001
Yurdanur Tulunay1, Erdem Turker Senalp2, Ersin Tulunay2
(1)
ODTU / METU Ankara, TURKEY
Dept. of Aerospace Eng., [email protected]
(2) Dept. of Electrical and Electronics Eng.
ESWW4, 5-9 Nov. 2007, Brussels
1
CONTENTS
1. Introduction
2. METU-NN-C
3. Data Organisation
4. Results
5. Conclusions
6. Acknowledgements
7. References
ESWW4, 5-9 Nov. 2007, Brussels
2
INTRODUCTION
Ionospheric processes:
highly nonlinear and dynamic
TEC:
key parameter in navigation
and telecommunication
METU Group:
specialized on data driven
modelling since 1990’s
Recently developped:
NN and Cascade Model based
on the Hammerstein system
modelling
ESWW4, 5-9 Nov. 2007, Brussels
3
Objective:
•
to forecast TEC with higher accuracy under the
influence of the extreme solar events.
A case study: Solar Events of April 2002
•
A possible alternative to IRI-2001?
ESWW4, 5-9 Nov. 2007, Brussels
4
Why and How?
• Mathematical models of the ionospheric parameters
(i.e. TEC) DIFFICULT
• Data-driven approaches (i.e. NN modelling)
employed in parallel with the mathematical models
• Therefore, METU-NN-C using Bezier curves to represent
nonlinearities
ESWW4, 5-9 Nov. 2007, Brussels
5
METU-NN-C
•
TEC map over Europe constructed by METU-NN in
2004 and 2006 (Tulunay et al. [2004a, 2006] )
•
to increase the performance, a new technique,
METU-NN-C developped [Senalp, 2007]
ESWW4, 5-9 Nov. 2007, Brussels
6
1
2
Fig. 1. Construction of the METU-NN-C Models
3
[Senalp et al., 2007]
ESWW4, 5-9 Nov. 2007, Brussels
7
k
: Discrete time index
uDp(k) : Inputs
xDq(k) : the internal variables of the METU-C
Block 1:
METU-NN model estimates the state-like variables for
the METU-C
ESWW4, 5-9 Nov. 2007, Brussels
8
Block 2:
Construction of Nonlinear Static Block of
METU-C
ESWW4, 5-9 Nov. 2007, Brussels
9
Block 3:
Construction of Linear Dynamic Block of
METU-C
ESWW4, 5-9 Nov. 2007, Brussels
10
The Generic METU-NN-C Model
ESWW4, 5-9 Nov. 2007, Brussels
11
Phases of Application of METU-NN-C:
•
•
‘Training’
‘Test’
Inputs:
• Present value of TEC: TEC(k)
• Temporal parameters: Trigonometric comp. of time
Bezier curves to represent NONLINEARITIES
METU-NN: State-like variable estimator
Output:
• Forecast TEC values one hour in advance
ESWW4, 5-9 Nov. 2007, Brussels
12
DATA ORGANIZATION
• 10-min GPS-TEC data of
Chilbolton (51.8˚N; 1.26˚W)
Hailsham (50.9˚N; 0.3˚E)
• Development Step:
Training:
Chilbolton TEC
Validation:
Chilbolton TEC
(April; May 2000, 2001)
(April-May 2000, 2001)
• Operation Step:
Validation:
Hailsham TEC (April; May 2002)
• 2000-2002 SSN max. years
ESWW4, 5-9 Nov. 2007, Brussels
13
RESULTS
Fig. 2 Observed and one hour ahead Forecast Hailsham TEC values for April, May
2002 [Senalp et al., 2007]
ESWW4, 5-9 Nov. 2007, Brussels
15
Fig. 3. METU-NN-C and IRI-2001 during disturbed conditions (Hailsham)
ESWW4, 5-9 Nov. 2007, Brussels
16
METU-NN-C
IRI-2001
- Fig. 4. Scatter diagrams and best-fit lines: in 18-19 April 2002 at Hailsham
ESWW4, 5-9 Nov. 2007, Brussels
17
Table 1. Performance of models
(18-19 April 2002; Hailsham)
Normalized Error (%)
Cross Correlation Coefficient (x10-2)
ESWW4, 5-9 Nov. 2007, Brussels
METU-NN-C
20.04
98.7
IRI-2001
204.1
83.8
18
CONCLUSIONS
• During disturbed SW conditions, METU-NN-C seems to
show better performance over IRI-2001
• METU-NN-C Model - more versatile and has got
advantages provided that the representative data are
available
ESWW4, 5-9 Nov. 2007, Brussels
19
Acknowledgements
This work is partially supported by
• EU action of COST 296 (Mitigation of Ionospheric Effects on Radio
Systems)
• TUBITAK-ÇAYDAG (105Y003)
• GPS-TEC data are kindly provided by Dr. Lj. R. Cander
ESWW4, 5-9 Nov. 2007, Brussels
20
References
Altinay O., E.Tulunay, and Y. Tulunay (1997), Forecasting of ionospheric critical frequency using neural networks,
Geophys. Res. Lett., 24(12), 1467-1470, and COST251 TD(96)016.
Bézier, P.E. (1972), Numerical Control – Mathematics and Applications, Translated by Forrest A.R. and Pankhurst A.F., pp.
115-136, John Wiley & Sons Ltd., England.
Bilitza D. (2001), International Reference Ionosphere 2000, Radio Sci., 36(2), 261-275.
Hagan M.T., and M.B. Menhaj (1994), Training Feedforward Networks with the Marquard Algorithm, IEEE T. on Neural
Networ., 5(6), 989-993.
Haykin S. (1999), Neural Networks: A Comprehensive Foundation, 2nd ed., pp. 2, 10, 21-22, 83-84, 169, 215, Prentice-Hall,
Inc., New Jersey, USA.
Ikonen E., and K. Najim (1999), Learning control and modelling of complex industrial processes, Overview report of the
activities within the European Science Foundation's programme on Control of Complex Systems (COSY) Theme 3:
Learning control, February 1999.
Narendra K.S., and P.G. Gallman (1966), An Iterative Method for the Identification of Nonlinear Systems Using a
Hammerstein Model, IEEE T. Automat. Contr., 546-550.
Radicella S.M., and E. Tulunay (2004), Space plasma effects on Earth-space and satellite-to-satellite communications:
Working Group 4 overview, Ann. Geophys.-Italy, 47(2/3), 1279-1283.
Rogers D.F., and Adams J.A. (1990), Mathematical Elements for Computer Graphics, 2nd ed., pp. 289-308, 379-477,
McGraw-Hill, Inc., New York, USA.
Senalp E.T., E. Tulunay, and Y. Tulunay (2006a), Neural Networks and Cascade Modeling Technique in System
Identification, TAINN’2005, 16-17 June. 2005, Cesme, Izmir, Turkey, 286-293; Lect. Notes Artif. Int., 3949, 84-91.
ESWW4, 5-9 Nov. 2007, Brussels
21
Senalp E.T., E. Tulunay, and Y. Tulunay (2006b), System Identification by using Cascade Modeling Technique with Bezier
Curve Nonlinearity Representations, TAINN’2006, 21-23 June 2006, Akyaka, Mugla, Turkey, 75-82.
Senalp E.T. (2007), Cascade Modeling of Nonlinear Systems, Ph-D Thesis, (Supervisor: E. Tulunay), Middle East Technical
University, Dept. of Electrical and Electronics Eng., Ankara, Turkey, August 2007.
Senalp E.T., Y. Tulunay, and E. Tulunay (2007), Total Electron Content (TEC) Forecasting by Cascade Modeling: A Possible
Alternative to the IRI-2001, Radio Sci., (submitted)
Stamper R., A. Belehaki, D. Buresova, Lj.R. Cander, I. Kutiev, M. Pietrella, I. Stanislawska, S. Stankov, I. Tsagouri, Y.K.
Tulunay, and B. Zolesi (2004), Nowcasting, forecasting and warning for ionospheric propagation: tools and methods,
Ann. Geophys.-Italy, 47(2/3), 957-983.
Tulunay, E. (1991), Introduction to Neural Networks and their Application to Process Control, in Neural Networks Advances
and Applications, edited by E. Gelenbe, pp. 241-273, Elsevier Science Publishers B.V., North-Holland.
Tulunay E., E.T. Senalp, Lj.R. Cander, Y.K. Tulunay, A.H. Bilge, E. Mizrahi, S.S. Kouris, N. Jakowski (2004a), Development of
algorithms and software for forecasting, nowcasting and variability of TEC, Ann. Geophys.-Italy, 47(2/3), 1201-1214.
Tulunay E., Y. Tulunay, E.T. Senalp, Lj.R. Cander (2004b), Forecasting GPS TEC Using the Neural Network Technique “A
Further Demonstration”, Bulgarian Geophysical Journal, 30(1-4), 53-61.
Tulunay E., E.T. Senalp, S.M. Radicella, Y. Tulunay (2006), Forecasting Total Electron Content Maps by Neural Network
Technique, Radio Sci., 41(4), RS4016.
Tulunay Y., E. Tulunay, and E.T. Senalp (2001), An Attempt to Model the Influence of the Trough on HF Communication by
Using Neural Network, Radio Sci., 36(5), 1027-1041.
Tulunay Y., E. Tulunay, and E.T. Senalp (2004a), The Neural Network Technique-1: A General Exposition, Adv. Space Res.,
33(6), 983-987.
Tulunay Y., E. Tulunay, and E.T. Senalp (2004b), The Neural Network Technique-2: An Ionospheric Example Illustrating its
Application, Adv. Space Res., 33(6), 988-992.
ESWW4, 5-9 Nov. 2007, Brussels
22