3.6 The Chain Rule Bell Ringer Solve even #’s We now have a pretty good list of “shortcuts” to find derivatives of simple functions. Of course, many of the functions that we will encounter are not so simple. What is needed is a way to combine derivative rules to evaluate more complicated functions. Consider a simple composite function: y 6 x 10 y 2 3x 5 If u 3x 5 then y 2u y 6 x 10 y 2u u 3x 5 dy 6 dx dy 2 du du 3 dx 6 23 dy dy du dx du dx and another: y 5u 2 where u 3t y 5 3t 2 y 5u 2 u 3t y 15t 2 then y 5 3t 2 dy 15 dt dy 5 du du 3 dt 15 5 3 dy dy du dt du dt and one more: y 9x 6x 1 2 y 3 x 1 y u2 u 3x 1 dy 18 x 6 dx dy 2u du du 3 dx 2 If u 3x 1 then y u 2 y 9x2 6x 1 This pattern is called the chain rule. dy 2 3 x 1 du dy 6x 2 du 18x 6 6 x 2 3 dy dy du dx du dx Chain Rule: dy dy du dx du dx If f g is the composite of y f u and u g x , then: f g fat u g x gat x example: f x sin x g x x2 4 f x cos x g x 2x Find: f g at x 2 g 2 4 4 0 f 0 g 2 cos 0 2 2 1 4 4 We could also do it this way: f g x sin x 2 4 y sin x 4 2 y sin u dy cos u du dy cos x 2 4 2 x dx u x2 4 du 2x dx dy dy du dx du dx dy cos u 2 x dx dy cos 22 4 2 2 dx dy cos 0 4 dx dy 4 dx Here is a faster way to find the derivative: y sin x 2 4 d 2 y cos x 4 x 4 dx 2 y cos x 2 4 2 x Differentiate the outside function... …then the inside function At x 2, y 4 Another example: d cos 2 3 x dx 2 d cos 3 x dx It looks like we need to use the chain rule again! d 2 cos 3 x cos 3 x dx derivative of the outside function derivative of the inside function Another example: d cos 2 3 x dx 2 d cos 3 x dx d 2 cos 3 x cos 3 x dx d 2 cos 3x sin 3x 3x dx 2cos 3x sin 3x 3 6cos 3x sin 3x The chain rule can be used more than once. (That’s what makes the “chain” in the “chain rule”!) Derivative formulas include the chain rule! d n n 1 du u nu dx dx d du sin u cos u dx dx d du cos u sin u dx dx d du 2 tan u sec u dx dx etcetera… The formulas on the memorization sheet are written with instead of du . Don’t forget to include the u term! dx u The most common mistake on the chapter 3 test is to forget to use the chain rule. Every derivative problem could be thought of as a chain-rule problem: d 2 d x 2 x x 2 x 1 2x dx dx derivative of outside function derivative of inside function The derivative of x is one. The chain rule enables us to find the slope of parametrically defined curves: dy dy dx dt dx dt dy dt dy dx dx dt dx Divide sides Theboth slope of aby parametrized dt curve is given by: dy dy dt dx dx dt Example: x 3cos t y 2sin t These are the equations for an ellipse. dx dy 3sin t 2 cos t dt dt dy 2 cos t 2 cot t dx 3sin t 3 Example: x 3cos t y 2sin t 4 Now we can find the slope for any value of t : For example, when t 4 : 2 2 slope cot 3 3 4 Don’t forget to use the chain rule! Homework: 3.6a 3.6 p153 1,15,31,45,61 3.5 p146 21,27,33,43 2.1 p66 9,18,27,36 3.6b 3.6 p153 5,7,21,23,35,37,51,53 2.1 p66 41,44,55 3.6c 3.6 p153 9,13,27,39,43,57 2.2 p76 9,18,27,36
© Copyright 2026 Paperzz