Biomass conversion technologies and LCA implementation Davide Tonini, Brian Vad Mathiesen and Thomas Astrup CEESA meeting, Ålborg, 25-01-2010 Outline Energy analysis of conversion technologies for biomass and waste – overview Focus on efficiency of gasification technologies Future work: LCA implementation Conversion technologies Primary biomass is converted to energy carriers (syngas, biogas, biofuels) and byproducts Efficiencies and energy losses Byproducts can be utilized for energy or soil amelioration Anaerobic digestion Crucial parameter for biogas yield: VS content of substrate Ash content of substrate T and retention time (psicrophilic, mesophilic, thermophilic) Availability of substrate (size of material, hydrolisis etc.) Yield -----> Nm3/tonne FM LHV biogas = 18-24 MJ/Nm3 Thermal gasification Sub-stoichiometric thermal treatment of a fuel Gasification agent: Air (direct gasification) Steam (indirect gasification) Indicated for material with low ash content and high sintering point (slagging problems) Main energy parameter: Cold gas efficiency ----> energy transferred from biomass to syngas LHV syngas = 4 - 8 MJ/Nm3 Qsyngas LHVsyngas CGE Qfuel LHVfuel [1] [2] [3] Biomass fate in CEESA and IDAs Potential technology Biofuel to transport methane bio jet-fuel biodiesel Individual heating Industry (1)[2] Industry (2) District heating plants Decentralized CHP Centralized CHP Waste incineration Total Energy carrier methane jetfuel biodiesel gas gas turbines gas steam turbine-cogen. biomass large boilers gas gasif.-SOFC-dec. gas gasif.-SOFC-cen. gas incineration waste anaerobic digest. transesterification small boilers Carrier energy required in IDA 2050 (PJ)1 Biomass required in IDA 2050 (PJ)[1] BAU-Biomass potential in CEESA (PJ) Carrier energy potential in CEESA (PJ)1 5.7 33.4 29.1 3.1 18.4 ? 61.8 3.8 18.4 0 3.4 3.8 60[3] 73.2 73.2 6.5 28.7 41.7 44.4 251 7.9 7.9 85.8 85.8 44.4 47 5.7 0 1.6 3.1 46.5 13.5 6.5 28.7 41.7 47 194.3 According to IDAs Klimaplan (Table 21, page 90, Baggrundsrapport). When referring to gas as carrier, the amount of biomass is recalculated based on typical efficiencies of the process considered (i.e. rapeseed to RME) It is assumed that the energy required by industries is met both by gas and direct biomass combustion (mainly byproducts from biofuels production) Compared to IDAs Klimaplan the energy demand for the industry sector is decreased from 80 to 60 PJ Conversion technologies - overview Potential conversion technologies Biomass potential Biomass PJ tonne LHV (GJ/t) Biofuels Gasif. AD Comb. rapeseed 3.4 123,690 27.5 X willow 0.5 33,784 14.8 X X grass 6.8 453,333 15.0 X X straw 65 4,482,759 14.5 X X beet top 0.2 98,039 2.0 X animal manure 27 5,400,000 5.0 X fiber fraction 2 147,438 13.6 X mill residues 0.9 45,455 19.8 X beet pulp 1.7 328,947 5.2 X X molasses 1.2 447,761 2.7 X X potato pulp 0.3 105,634 2.8 X X brewer's grain 0.6 141,176 4.3 X X whey 2.8 3,111,111 0.9 X X wood chips 7.7 407,407 18.9 X X fire wood 26 1,276,011 20.4 X unexploited forest 17 834,315 20.4 wood pellets 2.6 127,601 wood residues 6.3 waste 47 TOTAL 219 Main byproducts generated Selected Byproduct 1 amount (PJ) Byproduct 2 amount (t) X to RME rape meal X gasification char X Anaer. Dig. fibers X gasification char X X Anaer. Dig. digestate X X Anaer. Dig. liq. Fract. (t) 1,791,375 X X Anaer. Dig. digestate X Anaer. Dig. digestate X Anaer. Dig. digestate Anaer. Dig. digestate X Anaer. Dig. digestate X Anaer. Dig. digestate Anaer. Dig. digestate X gasification char tar X X gasification char tar X X X gasification char tar 20.4 X X X gasification char tar 318,182 19.8 X X X gasification char tar 4,700,000 10.0 X X X combustion bottom ash X X X X 1.2 K2SO4 802 4.5 proteins 68,000 tar digestate fly ash 6.7 0 Gasification and anaerobic digestion – energy efficiency (PJ) Heat (PJ) El (PJ) CGE[1] Gas yield (Nm3/t) LHVgas (GJ/Nm3) 0.5 6.8 65.0 0.2 0.07 0.23 7.79 0.06 0.01 0.05 0.66 0.01 0.93 0.85 2118 210 1896 67 0.0065 0.01974 0.0065 0.02404 Gross[2] energy in gas (PJ) Not relevant here 0.5 1.9 55.3 0.2 1.03 0.43 0.12 0.20 0.25 0.04 0.01 0.05 0.85 0.93 beet pulp 8.6 2.0 0.9 1.7 67 3203 2833 67 0.0223 0.0036 0.0065 0.02404 2.6 1.7 0.8 0.5 molasses 1.2 0.27 0.06 67 0.02404 0.7 potato pulp 0.3 0.06 0.02 67 0.02404 0.2 brewer's grain 0.6 0.08 0.02 320 (?) 0.02404 1.1 (?) whey wood chips fire wood Forest unexploited increm. wood pellets wood residues 2.8 7.7 26.0 17.0 2.6 6.3 1.85 1.01 3.41 2.23 0.34 0.83 0.45 0.09 0.29 0.19 0.03 0.07 44 2704 2915 2915 2915 2833 0.01794 0.0065 0.0065 0.0065 0.0065 0.0065 2.4 7.2 24.2 15.8 2.4 5.9 Not relevant here 143 19.8 2.2 Biomass rapeseed willow grass straw beet top manure fiber fraction mill residue waste[3] TOTAL [1] [2] [3] 0.93 0.93 0.93 0.93 0.93 CGE=Cold Gas Efficiency. It is the most important parameter to assess the energy efficiency of a gasification process The energy content of the gas does not take into account the energy required for the plant heat/energy consumptions Only the residual waste (after source separation) which is today used for energy purposes is here considered 121.4 Conclusion - technologies Biomass availability is limited especially for biofuels Need for energy crops (33.4 PJ of bio-jetfuel and 29.1 PJ of biodiesel) Integration of gasification and anaerobic digestion with gasfired SOFC power plant -------> estimation of energy savings and “decreased performance” of the connected power plants Future work – LCA Future work: implementation of LCA by means of Simapro and EASEWASTE (for waste) Period: February – June 2010 LCA is Dependent on: The choice of conversion technologies The fate of the biomass The scenarios Direct and indirect LUC consequences (Lorie) Implementation of LCA Analysis of all energy and mass flows Assessment of re-utilization of byproducts for energy or agriculture purposes (also char from gasification) Indirect Land Use Change ------> Not included in the first assessment (further collaboration with Lorie) Agricultural land Agricultural land Biodiesel from rapeseed Agricultural land 0.36 kt barley 8.7 kt palm fruit 26.8 kt soy beans 0.36 kt carbohydrate fodder 0.36 kt palm meal Palm oil and meal production 8.4 kt palm oil 4.8 kt soy oil Soy oil and meal production 4.8 kt soy oil 22 kt soy meal Methanol production Agricultural land 0.25 PJ rapeseed (3.6 kt rape oil) 0.013 PJ methanol 22 kt rape meal 1 PJ rapesee d Oil milling Catalysts production 63 t KOH Fertiliser production 236 t K-fertilizer Glycerine production 1.39 kt glycerine 0.54 PJ rape oil 22 kt soy meal 22 kt animal fodder Esterification 0.48 PJ RME 0.48 PJ RME 236 t catalyst 1.39 kt glycerine Straw gasification 1 PJ straw 73 kt straw Straw gasification Biochar 0.85 PJ syngas Use-on-land Binding of carbon in the soil Depletion of carbon in the soil Decrease of crops yield Wood gasification 1 PJ wood chips Wood gasification Biochar Lost alternative? 0.93 PJ syngas Use-on-land Anaerobic digestion of grass 1 PJ grass Anaerobic digestion 1 PJ grass Biogas purification 0.32 PJ CH4 0.1 PJ fibers fraction 6.6 kt Animal feed Agricultural land 6.6 kt barley 6.6 kt barley Anaerobic digestion of manure 1 PJ animal manure 1 PJ manure Separation & Anaerobic digestion Biogas purification (3497 kt N, 867 kt P, 1746 kt K) Fertilizer production Fertilizer (3497 kt N, 867 kt P, 1746 kt K) Storage Fertilizer (3518 kt N, 854 kt P, 2043 kt K) Fertilizer production Fertilizer (2286 kt N, 854 kt P, 2043 kt K) 0.3 PJ CH4 Digestate & liquid manure Use-on-land Use-on-land 1 t residual waste steam Waste refinery Anaerobic digestion 2 GJ biogas 0.4 t solid fraction Cocombustion in power plant 5 GJ RDF 24 kg glass Glass recycling 24 kg glass Resources/e nergy Glass production 0.96 t liquid fraction water enzymes Residual waste The Renaissance option 20 kg ferrous metals Ferrous metals recycling 20 kg Iron Steel production 10 kg Aluminium Aluminium recycling 8.2 kg Aluminium Aluminium production 13 kg plastic Plastic recycling 11.6 kt crude oil Plastic production 20 kg steel 8 kg Al 10.5 kt plastic Residual waste incineration Thermal treatment 1 tonne residual waste Natural gas extraction Natural gas ash Disposal in mineral landfill 20 kg Fly ash Disposal in salt mine 180 kg Oil extraction Coal 0.21 GJ el, 0.76 GJ heat Oil CHP Conclusion (remarks..) - LCA LCA implementation is dependent on: Biomass availability Choice of the conversion technologies (also own decision) Indirect LUC for cultivation of energy crops Thank you for the attention
© Copyright 2026 Paperzz