SDW M(SC) SDW SDW M(SC) M(SC) Domain walls at the SDW endpoint of (TMTSF)2PF6 under pressure C.Pasquier, N. Kang, B.Salameh, P. Auban-Senzier, D.Jérome Laboratoire de Physique des Solides, Orsay S. Brazovskii LPTMS, Orsay Acknowledgments: P. Grigoriev Outline SDW SC SDW SC SDW • Superconductivity at the border of density wave states • The case of (TMTSF)2ReO4 • Phase separation in (TMTSF)2PF6 SC SC/CDW proximity SDW SC SDW SC SDW SC TTF [Ni(dmit)2]2 1TTaS2 CDW SC L.Brossard et al , PRB (1990) Per2 [Au(mnt)2] Superconductivity at the end point of a charge density wave state in organic and inorganic systems Tc,max 6-8K D. Graf et al, EPL, 85 27009 (2009) TiSe2 A. F. Kusmartseva et al., PRL 103, 236401 (2009) SC/(SDW or AF) proximity SDW SC SDW SC SDW SC (TMTTF)2X & (TMTSF)2X -(BEDT-TTF)2X Superconductivity at the end point of a spin density wave (or AF) state in organic and inorganic systems S. Nandi et al., PRL 104, 057006 (2010). SC/DW proximity SDW SC SDW SC SDW Superconductivity at the end point of density wave is therefore a common feature in unconventional superconductivity. How does SC emerge from a density wave state ? We will focus on a 1D organic systems, essentially (TMTSF)2PF6 It appears that there is a phase coexistence with the formation of domains and not ‘stripes’. We have to be careful and check that such phase coexistence is not due to structural transition like in (TMTSF)2ReO4: what happens in this case ? SC SDW Phase coexistence in (TMTSF)2ReO4 SC SDW SC SDW SC b c Insulator Metal Moret R., Pouget J.-P., Comes R. and Bechgaard K., Phys.Rev.Lett., 49 (1982) 1008 Parkin S.S.P. Jérome D. and Bechgaard K., Mol.Cryst.Liq.Cryst., 79 (1981) 213 SC at low Temperature above 8kbar a SC SDW SC SDW ANISOTROPIE (c/a) 200 0 0.3000 0.6000 0.9000 1.200 1.500 1.800 2.100 2.400 2.700 3.000 3.300 3.600 3.900 4.200 4.500 4.800 5.100 5.400 5.700 6.000 180 160 Température (K) 140 120 100 80 60 40 20 (log scale) 200 0 0.3000 0.6000 0.9000 1.200 1.500 1.800 2.100 2.400 2.700 3.000 3.300 3.600 3.900 4.200 4.500 4.800 5.100 5.400 5.700 6.000 180 160 140 120 100 80 60 40 20 6 7 8 9 10 6 11 7 8 9 10 Pression (kbar) Pression (kbar) ANISOTROPIE (c/b) (log scale) 200 Self- organisation along a 0 0.3000 0.6000 0.9000 1.200 1.500 1.800 2.100 2.400 2.700 3.000 3.300 3.600 3.900 4.200 4.500 4.800 5.100 5.400 5.700 6.000 180 160 Température (K) SC ANISOTROPIE (b/a) (log scale) Température (K) SDW Phase coexistence in (TMTSF)2ReO4 140 120 100 80 60 40 20 6 7 8 9 Pression (kbar) 10 C.Colin et al., EPL, 75, 301 (2006) SDW Phase coexistence in (TMTSF)2ReO4 SC SDW SC SDW SC a 2 possible orientations for each anion (2a,2c) Simple model : anisotropic Ising model Onsager (1941) Pseudospin : (a,2c) |+> if lattice parameter = 2a |-> if lattice parameter = a anisotropic interactions between spins anisotropic interactions between chains Pouget, Ravy,… Metal Semiconductor Filaments or anisotropic bubbles oriented along a SDW Phase coexistence in (TMTSF)2PF6 SC SDW SC SDW SC b-axis a-axis c-axis SDW Phase coexistence in (TMTSF)2PF6 SC SDW SC SDW PHASE A : SC visible along c* only! SC along c P: 7.1kbar 321mK dV/dI (k) 3 2 87mK -4 -2 0 2 (A) 4 SC SDW Phase coexistence in (TMTSF)2PF6 SC SDW SC SDW SC PHASE B : SC visible along c* and b’! 4 2 c 0 5 dV/dI(a.u.) 20 b a 6 0 c =0 at low T Double transition in b which disappears when P increases. Clear non-linearities as a function of current Some features are field independent P: 8.0 kbar 10 0 0 1 2 3 Temperature (K) (b) 50 amcm (a) b (mcm ccm) 8 T: 360mK H (G) 0 38 50 76 105 134 161 171 4 3 2 1 -0.6 -0.4 -0.2 0.0 0.2 (mA) 0.4 0.6 SDW Phase coexistence in (TMTSF)2PF6 SC SDW SC SDW PHASE A: 7.5kbar PHASE B: 8kbar H Non linearities at zero bias persist up to high fields. They appear with SC at low pressure and disappear for PPc0 SC SDW Phase coexistence in (TMTSF)2PF6 SC SDW SC SDW SC PHASE C : SC visible along c*, b’ and a! Double transition in a which disappears when P increases. SDW c Phase coexistence in (TMTSF)2PF6 SC SDW SC SDW b a SDW SDW SD W SD W SDW SDW SDW Tunnel junctions Josephson junctions From bubbles to slabs by adjusting hydrostatic pressure SC SDW Phase coexistence in (TMTSF)2PF6 SC SDW SC SDW How to understand this texture evolution ? Why SC does appear first along c (the worst conducting direction!!!!) ? Many theories have been developed for cuprates… …..but only one theory seems to fit our data S. Brazovskii, L.P. Gorkov and A.G. Lebed, JETP 56 (1982) 683 Soliton model : L.P.Gorkov, P.D.Grigoriev, EPL 71,425 (2005); PRB, 75, R20507 (2007) Existence of soliton domain walls (metallic) perpendicular to a- axis and expected peak of the anisotropy sb,c / sa at the DW / Metal transition c b a SDW SDW SD W SD W SDW SDW SDW See also experiments by Lee et al (PRL 2002,PRL 2005) SC SDW Phase coexistence in (TMTSF)2PF6 SC SDW SC SDW SC An image with the hands of the soliton model : how do metal (SC) emerge from a DW Ecreation of a soliton < SDW gap DSDW DSDW Low pressure: Homogeneous SDW DSDW N. Kang et al. PRB (2010) DSC Phases B and C: Bands in the SDW gap ‘soliton phase’ Phase A: Midgap state in SDW gap DSC High pressure : SC homogeneous phase Journées labo, 7 Octobre 201 SDW Phase coexistence in (TMTSF)2PF6 SC SDW SC SDW SC We believe that the deep in dV/dI characteristics is related to this particular band structure (as we are doing tunneling experiments!) PHASE B: 8kbar DSDW DSDW Low pressure: Homogeneous SDW DSDW DSC Phases B and C: Bands in the SDW gap ‘soliton phase’ Phase A: Midgap state in SDW gap DSC High pressure : SC homogeneous phase SDW c Phase coexistence in (TMTSF)2PF6 SC SDW SC SDW b a SDW SDW SD W SD W SDW SDW ? Why c first ??? E (k ) 2ta cos ka 2tb0 cos kb Q s tan dard (1 / 2,1 / 2, qc ) Experiments : Q nesting (1 / 2, 1 / 4, qc ) J.P.Pouget, S.Ravy, Synth. Metals 85,1523 (1997) T.Takahashi et al, JPSJ 55,1364 (1986) SDW SC SDW c Phase coexistence in (TMTSF)2PF6 SC SDW SC SDW b a SDW SDW SD W SD W SDW SDW SDW Why c first ??? E ' (k ) 2t 'b cos 2kb 2tc cos kc Eanti (k ) E ' (k Q nesting ) E ' (k ) = deviation from nesting governs the evolution from SDW to metal As qb ¼, the term in kb is small, the term in kc is dominant. So ‘’’’’everything’’’’’ is fixed along ka and kb but not kc. SC Conclusion SDW SC SDW SC SDW We have followed experimentally the evolution of the Metal (SC) concentration in the SDW matrix in (TMTSF)2PF6: bubbles - filaments - slabs evolution This evolution is understandable within a ‘soliton model’ Future : Is this evolution observable in other 1D systems or other materials with SDW/SC competition at the mesoscopic scale? Is it related to the particular Fermi surface of (TMTSF)2PF6 where electrons for SC and SDW come from the same band. Same features for CDW/SC competition ? SC SDW SC SDW SC SDW SC SDW SC SDW SC SDW Cargese SC August 18, 2011 The ‘green flash’ spot ?
© Copyright 2026 Paperzz