Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1971 Dynamic Programming Algorithm for Minimum Cost Design of Multispan Highway Bridges. Kambiz Movassaghi Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: http://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Movassaghi, Kambiz, "Dynamic Programming Algorithm for Minimum Cost Design of Multispan Highway Bridges." (1971). LSU Historical Dissertations and Theses. 2153. http://digitalcommons.lsu.edu/gradschool_disstheses/2153 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. INFORMATION TO USERS This dissertation was produced from a microfilm copy o f the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted. The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction. 1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity. 2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image. You will find a good image of the page in the adjacent frame. 3. When a map, drawing or chart, etc., was part o f the material being photographed the photographer followed a definite method in "sectioning" the material. It is customary to begin photoing at the upper left hand corner of a large sheet and to continue photoing from left to right in equal sections w ith a small overlap. If necessary, sectioning is continued again — beginning below the first row and continuing on until complete. 4. The majority o f users indicate that the textual content is o f greatest value, however, a somewhat higher quality reproduction could be made from "photographs” if essential to the understanding o f the dissertation. Silver prints of "photographs" may be ordered at additional charge by writing the Order Department, giving the catalog number, title, author and specific pages you wish reproduced. University Microfilms 300 North Zeeb Road Ann A rbor, Michigan 48106 A Xerox Education Com pany 72-17,791 MOVASSAGHI, Kambiz, 1940DYNAMIC PROGRAMMING ALGORITHM FOR MINIMUM COST DESIGN OF MULTISPAN HIGHWAY BRIDGES. The Louisiana State University and Agricultural and Mechanical College, Ph.D., 1971 Engineering, civil University Microfilms, A XEROX Company, Ann Arbor, Michigan © 1972 KAMBIZ MOVASSAGHI ALL RIGHTS RESERVED DYNAMIC PROGRAMMING ALGORITHM FOR MINIMUM COST DESIGN OF MULTISPAN HIGHWAY BRIDGES A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Civil Engineering by Kambiz Movassaghi M.S. Louisiana State University, 1965 December, 1971 PLEASE NOTE: Some pages may have indistinct F i l me d as University Microfilms, print. received. A X e ro x E d u c a t i o n Company ACKNOWLEDGEMENT The author is grateful and wishes to express his sincerest appreciation to Dr. Rodolfo J. Aguilar who suggested the problem and gave valuable guidance and assistance during the course of this study. The author gratefully acknowledges the other members of the advisory committee--Professors Mohamed Al-Awady, B. J. Covington, F. J. Germano, Benjamin E. Mitchell, and especially H. T. Turner, Committee Co-Chairman— for their review of the manuscript and their constructive suggestions and criticisms. Special thanks to professor John A. Brewer, III for his valuable advice and assistance in the development of the computer program. The Louisiana Department of Highways and the U. S. Department of Transportation, Federal Highway Administration, are gratefully acknowl edged for providing the funds for the research project that made this study possible. Finally, the writer expresses his sincerest thanks to his wife, Mazie, for her never ending faith and encouragement, and to his parents, without whose dedication and aspirations his education would not have been completed. TABLE OF CONTENTS PAGE ACKNOWLEDGMENT ..................................................... ii LIST OF T A B L E S ..................................................... vi LIST OF F I G U R E S ................................................... viii ABSTRACT ........................................................... x 1. 1 INTRODUCTION ................................................... 1.1 1.2 1.3 1.4 2. Bridge Structures and Design Approach .................... P u r p o s e .................................................. Statement of the P r o b l e m ............................... Survey of Literature...................................... 1 3 3 6 METHOD OF S O L U T I O N ............................................. 11 2.1 2.2 2.3 2.4 3. Mathematical Programming Formulation ................... Dynamic Progra m m i n g ..................................... Dynamic Programming Model ofthe B r i d g e ................. Basic Properties of the M o d e l ........................... 11 12 13 17 MODEL D E C O M P O S I T I O N ........................................... 22 3.1 3.2 Limits on State and Decision V a r i a b l e s .................... 22 ........................................ 26 Optimal Policies 4. A L G O R I T H M ..................................................... 52 5. EXAMPLE P R O B L E M S ............................................... 56 5.1 5.2 5.3 Three Span B r i d g e ........................................ Six Span B r i d g e .......................................... Five Span Constrained B r i d g e ........................... 57 84 98 6 . SUMMARY AND C O N C L U S I O N S ........................................ 101 7. R E C O M M E N D A T I O N S ................................................. 1Q4 8 . R E F E R E N C E S ....................................................... 1Q5 iii TABLE OF CONTENTS (continued) PAGE 9. A P P E N D I C E S ...................................................... 109 9.1 Computer P r o g r a m ..........................................109 9.1.1 Main P r o g r a m ........................................ H O 9.1.1.1 P u r p o s e ................................... H O 9.1.1.2 Discussion of General Logic ............. 110 9.1.2 Deck Optimization R o u t i n e ......................... 128 9.1.2.1 Purpose .................................. 128 9.1.2.2 Discussion of General Logic ............. 128 9.1.3 Span Length Calculator R o u t i n e ..................... 135 9.1.3.1 Purpose .................................. 135 9.1.3.2 Discussion of General Logic; Free Bridge.135 9.1.3.3 Discussion of General Logic; Constrained B r i d g e ................................... 135 9.1.3.3.1 Free Span and Case A ........... 137 9.1.3.3.2 Free Span and Case B ...........138 9.1.3.3.3 Free Span and Case C ...........140 9.1.3.3.4 Fixed Bent Span and Case A . . 143 9.1.3.3.5 Fixed Bent Span and Case B . . 143 9.1.3.3.6 Fixed Bent Span and Case C . . 144 9.1.3.3.7 Fixed Center Line Span and Case A . 144 9.1.3.3.8 Fixed Center Line Span and Case B .........................146 9.1.3.3.9 Fixed Center Line Span and Case C . . . . . . . . . . . . 149 9.1.4 Branch Absorption Routine ....................... 9.1.4.1 Purpose .................................. 9.1.4.2 Discussion of General Logic ............. 159 159 159 9.1.5 Table Optimization Routine I ..................... 9.1.5.1 Purpose .................................. 9.1.5.2 Discussion of General Logic ............. 166 166 166 9.1.6 Table Optimization Routine I I ..................... 172 9.1.6.1 Purpose .................................. 172 9.1.6.2 Discussion of General Logic ............. 172 9.1.7 Table Optimization Routine I I I ..................... 178 9.1.7.1 P u r p o s e ................. ................ 178 9.1.7.2 Discussion of General Logic ............. 178 9.1.8 Computer Program Listing ......................... iv 184 TABLE OF CONTENTS (c o n tin u e d ) PAGE 9.2 Notation ............. 227 9.3 List of Symbols foxr Program Macro flow C h a r t s ............. 230 10. V I T A ........................ 232 v LIST O F TABLES PAGE 3.1 A Partial Summary Table for Returns of Stage (1,1), Span 1 • 31 3.2 A Partial Summary Table for Returns of Stage (1,2), Span 1 • 36 3.3 A Partial Summary Table for Returns of Span 1 3.4 A Partial Summary Table for Returns of Spans 1 and 2 . . . . 45 5.1 General Data for Bri-dge Decks 5.2 General Data for Pile Bents with Prestressed Concrete Piles. 66 5.3 Soil and Ground Profile . . . . 67 5.4 Specified Optimization Parameters for 3 Span Bridge . . . . 68 5.5 Deck Table . .. 5.6 Summary Table for Optimized Returns of Stage ( 1 , 1 ) ........69 5.7 Summary Table for Optimized Returns of Stage ( 1 , 2 ) ........70 5.8 Branch Absorption Summary Table 5.9 Summary Table for Optimized Returns of Stage 1 ............ 74 5.10 Summary Table for Optimized Returns of Stage (2,2) . . . . . 5.11 5.12 .. .. 39 .....................65 Data fox Three Span Bridge ... B ranch A b s o p r tio n T a b le . . . . . . . .. ......................... 69 for Span 1 ...................72 75 fo r Span 2 .............................................................. 77 Summary Table for Optimized Returns of Stage 2 ............79 5.13 Summary Table for Optimized Returns for Span 2 after Optimization. Over Span L e n g t h ............................... 80 5.14 Summary Table for Optimized Returns of Stage (3,2) . . . . . 5.15 Branch Absorption Summary Table for Span 3 ...................82 5.16 Hanked Summary Table for the Entire B r i d g e ...................82 5.17 Optimum 3 Span Bridge C o n f i g u r a t i o n ......................... 83 vi 81 LIST OF TABLES (continued) PAGE 5.18 Soil Data for Six Span B r i d g e ............................. 86 5.19 Specified Optimization Parameters for the Six Span Bridge • 87 9.1 Main Program Variable Definition L i s t ...................... H 7 9.2 Subroutine DKOPT Variable Definition List ................ 133 9.3 Subroutine SLC Variable Definition List .................. 154 9.4 Subroutine TABABS Variable Definition List ............... 163 9.5 Subroutine TAB0P1 Variable Definition List ............... 170 9.6 Subroutine TAB0P2 Variable Definition List ............... 176 9.7 Subroutine TAB0P3 Variable Definition List ............... 182 vii LIST OF FIGURES PAGE Highway Bridge of N Simply Supported Spans............... 4 ............. 14 Dynamic Programming Model of Span n ..................... 27 Dynamic Programming Model of Span 1 ..................... 28 Dynamic Programming Model of Span 2 ..................... 41 Dynamic Programming Model of Span N ..................... 49 Macroflow Chart for the Algorithm ....................... 55 Layout and Deck Cross Section of the 3 Span Bridge 58 Dynamic Programming Model of N Span Bridge . . . ................. 85 General Layout for the Five Span Bridge ................. 99 General Layout or the Six Span Bridge Macroflow Chart for the Main Program ................... 112 Decks of Common Span Length ............................. 131 Decks of Minimum Weight-Cost Boundary ................... 131 Decks for Prestressed Concrete Girders and Concrete Decks 131 Minimum Weight and Minimum Cost Deck Region ............. 131 Test Point Region ........................................ 131 Macroflow Chart for the Subroutine DKOPT ............... 132 Free Span and Case A .................................... 142 Free Span and Case B .................................... 142 Free Span and Case C .................................... 142 Fixed Bent Span and Case A . . ......................... 145 Fixed Bent Span and Case B .............................. 145 viii LIST OF FIGURES (continued) PAGE 9.13 Fixed Bent Span and Case C ...................................145 9.14 Fixed Center Line Span and Case A .......................... 147 9.15 Fixed Center Line Span and Case B .......................... 147 9.16 Fixed Center Line Span and Case C .......................... 147 9.17 Macroflow Chart for the Subroutine SI£ 9.18 Macroflow Chart for the Subroutine T A B A B S ................. 161 9.19 Macroflow Chart for the Subroutine T A B 0 P 1 ................. 168 9.20 Macroflow Chart for the Subroutine T A B 0 P 2 ................. 174 9.21 Macroflow Chart for the Subroutine T A B 0 P 3 ................. 180 ix ........... 148 ABSTRACT A theory for the systematic minimization of the total cost of an N simple span deck and girder, highway bridge structure is presented. Dy namic Programming, a mathematical technique applicable to the optimiza tion of serial systems is the method employed in developing and its solution. the model The geometric allocation of total bridge length into N spans (decisions concerning individual span lengths), and the selec tion of structural components for each of the spans are implemented simultaneously. For this reason, the set of optimal decisions generates a bridge design of minimum overall cost. All parameters which affect bridge structure economics, collectively or individually, can be readily incorporated in the mathematical model. The set of parameters includes, but is not restricted to, bridge geometry, types of super-structure and sub-structure components, material types and strengths, soil and ter rain conditions and construction costs. The optimization procedure resulted in an algorithm suitable for computer programming. An extensive computer program was developed to implement the optimization method. The optimization theory and the algorithm are independent of design procedures. Thus, no particular method of structural design for individual bridge components was em phasized. The computer program is modular and any recent or established structural design procedure can be incorporated with minimum program ming effort. The program is capable of generating several optimum bridge structures based on the user's specification of input data. 1. INTRODUCTION 1.1 Bridge Structures and Design Approach Modern bridge structures, In general, consist of several spans where each span Is an assembly of structural elements of different ma terials with several strength characteristics. The development of a bridge structure can be categorized into the following stages: 1. Planning and conceptual design. 2. Preliminary and final design of components. 3. Construction. The preliminary and the final design of a bridge component is usually a complex problem which requires a large number of computations. De velopment of new design theories, improved construction materials, and utilization of modern computational aids such as electronic computers have facilitated the design task and have resulted in more efficient and economical bridge structures. However, in the planning stages, selection of a geometric configuration; span lengths within the stated physical and structural constraints, and of components for the super structure and sub-structure of a highway bridge is frequently a nonsystematic procedure. That is, decisions are often reached based on the incomplete consideration of the effects of all parameters entering into the decision making process and influencing the overall cost of the project. Theoretically, absolute economy can be attained if an ex haustive search of all parameters affecting the cost of the project is performed. This approach, however, results in a multi-dimensional problem with a large number of alternative solutions which include one 2 or more optima and it is not feasible even with the aid of large, fast electronic computers. Consequently, civil engineers involved in the design of highway bridges must rely strongly on their knowledge of material behavior, construction techniques and, most of all, on their experience and engineering judgment in obtaining the most suitable solution to a given design problem. It is to the credit of these men that, by and large, overall economy has generally been attained. As more and more bridges are built in urban areas where a large number of constraints are imposed on the bridge geometry, the need for a systematic design procedure during the planning stages becomes of the outmost importance. To make the method meaningful, a large set of significant parameters must be considered. Solutions to these classes of multivariable problems have been considered too complex in the past. However, the recent advances in the development of optimization techniques have provided the engineer ing profession with rational and efficient methods of design. The procedures start with a concise and detailed definition of the problem and of the goals to be achieved. Next, alternative solutions to the problem, with full consideration of the set of established constraints, are structured in a systematic fashion. Finally, the merit of each solution is evaluated through an objective function and the best result or results are selected. This general optimization procedure is intended to generate an optimum value which here is defined to be the minimum cost of the bridge structure. An optimal solution is possible through the use of one or more of a set of mathematical programming techniques. Dynamic Program ming is one such technique and was extensively utilized in this work. 3 1.2 Purpose The conceptual design stage of a bridge structure was studied in this research. A method to apply Dynamic Programming to the decision making process involved in the minimum cost design of a hi.ghway bridge of N simple deck and girder spans was developed. Specifically, the method, within the defined feasible region, seeks and finds local mini ma corresponding to optimum bridge configurations by generating opti mum decisions for: 1. The allocation of total bridge length into N individual span lengths. 2. The selection of appropriate deck and bent components. The end result is an optimization algorithm and an extensive computer program to implement the method. The results presented here are of theoretical and practical impor tance. Theoretically, the results show, for the first time, the appli cation of Dynamic Programming to the overall planning and design of bridge structures. Practically, the algorithm and the computer program provide the bridge design engineer with a fast and efficient tool to compare alternative designs for economic selection purposes. 1.3 Statement of the Problem A general highway bridge, as depicted in Figure 1.1, was selected for this investigation. The bridge structure consists of N simply supported spans of total length L. Each span consists of three prin cipal components. One super-structure or deck component, which is the portion of the bridge lying above the bents. The deck can consist of n+1 n-1 N-l Span 1 Span 2 Span n-l Span n FIGURE 1.1 H IG H W A Y BRIDGE OF N SIMPLY SUPPORTED SPANS Span N-1 Span N 5 several elements in a variety of materials. Two sub-structure or bent components, formed by the right and left bents, also consist of several structural elements of dif ferent materials. The total bridge length, L, and the number of spans, N, must be es tablished a priori. To conform to certain terrain geometry it may be necessary to require that one or more of the spans in the bridge system have specified location and/or length. In addition, in a design problem a restriction on the minimum span length is usually desirable. fore, a lower bound span length is assumed for all spans. There Theoretically, the maximum span length can be established by the optimum policies in the problem. However, from the practical standpoint, an upper bound span length is determined based on the structural capability of elements in the deck components. It must be emphasized that the specification of upper and lower bound span lengths does not affect the generality of the problem or of its solution. To consider several policies for allocating the total bridge length into N individual span lengths, an incremental span length, A , for all spans must also be assumed. A basic assumption made here is that the to tal bridge length, L, the upper bound span length, and the lower bound span length, are all multiples of the incremental span length A . The reasons for this assumption will become clear later. A variety of deck and bent components must be considered as al ternative designs for a given span length. A particular design method for ascertaining the structural capacity of the deck or of the bent components is not specified. It is assumed that these components can 6 be designed and analyzed in accordance with some established rational procedure, that the cost coefficients are known, and that the total cost of each component can also be determined. Terrain geometry and soil profiles must be known and, within the boundaries of the bridge structure, soil data must be made available for all locations. 1.4 Survey of Literature Application of optimization theories to civil engineering struc tures has received moderate attention in the literature. Several methods for the minimum weight or cost design of frame and truss structures have * been reported (18-27). In the area of bridge design, evidence of sig nificant research on the cost minimization of the total bridge structure is non-existent. On all the reported work the emphasis has been placed on the optimization of a single member or a single component of the many that constitute a total highway bridge structure. The following is a review of the reported work: A method for cost minimization of a continuous constant depth plate girder was developed by Razani and Goble (15). The method is iterative. It generates a minimum cost girder with optimum decisions for the lo cation of flange splices. In addition, optimum thickness of flange seg ments along the length of the girder is also determined. Their "smooth ing procedure" is based on the application of dynamic programming which balances one type of cost against another and results in a minimum over all cost. In 1966, Goble and DeSantis (16) reported on their development *Numerals in parentheses refer to corresponding items in the list of References 7 of a method for optimum design of mixed steel composite girders. This work was basically an extension of previous work reported by Razani and Goble (15). In 1967, Razani (13) published a paper in the same area. In his latest work he discussed the analysis and optimization of con tinuous girders and bridge decks with floor beams subjected to standard AASHO (1) loadings. A procedure of minimum weight design of steel girders governed by the specifications of the American Institute of Steel Construction (2) has been provided by Holt and Heithecker (14). In 1966, Sturman, Albertson, Cornell and Roeseset (12) reported on the development of BRIDGE, a subsystem of ICES, the Integrated Civil Engineering System. They stated that no significant work was done on the development and inclusion of an optimization package in the total system. This goal was to be reached in the future. Then, in June of 1967, Cornell, Ho and Ehrlich (10) published a research report titled: "A Method for the Optimum Design of Simple Span Deck and GirderHighway Bridges." The following direct quotations from Section 1.2 of this re port described the scope and limitations of their work: ...the study treats the optimum design of standard deck-and girder highway bridges of a variety of structural crosssections. The non-prismatic girders are considered to be simple supported. ...the number of girders is included as a variable to be optimized. The span of the bridge is regarded as a speci fic input; no minimization with respect to individual span length is considered. ...all design is by working-stress method. ...the method of optimization adopted (a cutting plane ap proach) has been modified and adapted to yield results in a manner which showed itself to be both reasonably effi cient and generally reliable on the problems considered. As stated in the report (10), the basic limitation of the method is that a fixed span length must be specified. According to section 1.4 of this report, steel girder design was fully developed and is included in the optimization packaged Implementation of the method for other types of girders was left to the interested users. However, a point of much interest is that the effect of the bridge sub-structures on the total cost was not investigated. Consequently, the generated minimum cost includes only the deck portion of the bridge. sions were modified and used. Linear programming and its exten The resulting procedure is iterative in nature. In another published research report (11) from MIT, dated May of 1968, Raymond W. Lotona, under the supervision of C. A. Cornell, dis cussed a method for the optimization of bridge span arrangements. The method selects super-structure macro-geometry when steel stringers and concrete decks are used. For a given total bridge length, the number of spans and the number of girders for each span are established by the op timization policy. The method considers all "reasonable" alternative span arrangements, optimizes the deck components for each arrangement, and then selects the optimum bridge configuration. This is accomplished by: a. Defining support regions where a bridge abutment can be located. b. Determining which pairs of support regions can be connected by a single span with the provision that the specified maximum span length is not exceeded. c. Selection of all combinations of spans which require only one support in any support region. This step is carried out in a manner that the selected spans will reach the abutments and fit together without overlaps or gaps. d. Extending step c to include cases where more than one support may fall within a support region. The outlined procedure is restricted in use for highway bridges that are straight in plan, have parallel edges, and have constant deck depth with the exception of cover plates on the supporting girders. Here again, the cost of the individual bridge pier or abutment was not made a function of span arrangements. Instead, the cost of all sub-structure components were lumped and considered as a fixed quantity. ed Like most of the report work, the optimization method is modified linear programming and it is used in an iterative fashion. In 1967, Aguilar (9) presented a new approach to structural opti mization in his paper titled: "An Application of Dynamic Programming to Structural Optimization.11 He deviated from the common approach of for mulating the design of a structural member by a particular design pro cedure in a mathematical programming format to attain optimum weight or cost. Rather, he represented the structure by its Dynamic Program ming model and sought the optimal structure having minimum total cost. The structure considered was a simple platform consisting of a deck slab, four columns, and four footings and subjected to a uniformly dis tributed load. The approach did not involve itself with a specific design procedure for any one of the structural elements. Instead, it considered all feasible varieties of components, designed by any of the accepted methods in several available types of construction materials. Information required by the optimization method was the cost and the weight of each member considered. Although the platform was a simple structure, the procedure clearly demonstrated the feasibility and ef ficiency of structural optimization by Dynamic Programming. Of course, Dynamic Programming is only applicable to systems which are serial in nature. erty. Fortunately, statically determinate structures possess this prop Needless to say, the methodology for the procedure developed and presented in the following pages was inspired by this work. 2. 2.1 METHOD OF SOLUTION Mathematical Programming Formulation -f The first step in applying optimization theory to the performance of any physical system of known characteristics is to represent the system in an abstract or symbolic form known as a mathematical model. The model generally consists of: 1. An objective function which defines the total system utility in terms of the set of independent parameters affecting its behavior. 2. A set of constraint equations which defines the range of varia tion for each of the parameters. Solution of the problem through the use of an optimization technique constitutes the second step. The general approach outlined above is possible when the number of independent variables in the problem is small and the mathematical equa tions relating them can be easily formulated. In the case of a highway bridge such as the one in Figure 1.1, there are too many parameters af fecting the total bridge cost. In addition, the mathematical formula tion of the objective function and of the set of constraint equations is extremely difficult if not impossible to attain. Another class of optimization techniques generally known as direct climbing can also be applied to problems of the type considered here. However, as the dimensionality of the problem increases, the rate of convergence of direct climbing methods tends to decrease and, consequently, 11 12 their application is limited to smaller models. Problems which are serial in nature can be formulated and opti mized efficiently with Dynamic Programming. The bridge structure con sidered here is of a serial type and, for this reason, Dynamic Program ming was employed as the method of solution. Basic properties of this technique are discussed in the next section. 2.2 Dynamic Programming In the early 1950's, Richard Bellman "postulated his principle of optimality" (3) which states: "An optimal policy has the property that whatever the initial state and initial decision are, the remaining decisions must constitute an optimal policy with re gard to the state resulting from the first decision." This principle was intended to apply to serial systems; those with com ponents or stages connected head to tail with no recycle. In such a system, behavior of the most downstream stage does not affect the per formance of any upstream stage. In contrast, operation on any one of the upstream stages affects the behavior of all downstream stages. The most important property of Dynamic Programming is that it trans forms a complex, multistage, multidecision, serial problem with .many interdependent variables, into a series of one decision problems, each comprising only a few variables. The transformation does not change either the number of feasible solutions nor the corresponding values of the objective function. Dynamic Programming has proven useful in the study of deterministic and stochastic, continuous and discontinuous, linear and non-linear systems possessing a serial structure. A variety 13 of serial problems such as initial value problems, final value problems, boundary value problems, problems with converging and/or diverging branches, and even problems with recycle loops can be formulated and solved with Dynamic Programming. In addition to published papers on its application to the optimization of physical, real life systems, excel lent texts on dynamic programming theory are also available (3-8). 2.3 Dynamic Programming Model of the Bridge The bridge structure of Figure 1.1 behaves as a serial system. live load is applied by the moving traffic to the deck components. The The deck components then transmit the live load plus their dead load to the bent components, which in turn, transmit the applied load plus their weight to the supporting soil. As the bent component is the most downstream ele ment in the system, decisions concerning the type of bent do not affect any other component. Whereas, decisions about the length of a given span influence all downstream elements (the deck and the bents in the span). Figure 2.1 depicts the Dynamic Programming model of a serial struc ture of an N span, simply supported, highway bridge. The model consists of a system of deck stages to each of which two branched bent stages are connected. The information transmitted from one stage to another is either length or load. The nomenclature used is standard for Dynamic Programming problems. There are four state variables, two decision variables, and one re turn variable associated with each deck stage. To define these variables, consider deck stage n; X n is the input state variable to stage n; it represents the total length to be allocated to span n and to all spans downstream of span n. Di kdi 11 11 * Deck 1 n N_1h N-l A N-l W Deck xi O II i> r 2 1 3 ro*1 W ro 9 o to » to to I 1 1 1 d 1.1 1,1 2,1 • IO a 1 1 1 2,1 n n-l,2 * Bent n,2 n+1,1 Bent n-l,2 n,l ITT TT7 ri.i 03 9 9 0 0 0 a 1 a 1 h-» I— * H-* 1— » a a a a tO to ro M a a to I-1 Bent 1,2 2,1 Bent 1,1 0 0 nl 0 0 P • + to »-» a a to M M a M 01 0 9 9 M* M JO N> a • a • ro N» » • a • to 1— » ro it n-l,2 rn,2 dn,2 Bent N,2 Bent N-l,2 N, 1 rnr m N-l, 2 d N-l,2 N,2 A 2,1 n-l, 2 ®n,2 Figure 2.1 Dynamic Programming Model of N Span Bridge ®N-1,2 N,2 N,2 15 Xn is an output state variable from stage n; it represents the total length left over for allocation to all spans downstream of span n. s^ ^ is an output state variable from stage n; it represents the total load transmitted by deck stage n to bent stage (n,1). sn 2 i-s an output state variable from stage n; it represents the total load transmitted by deck stage n to bent stage (n,2 ). is a decision variable which allocates the available length (X ) to span n. n d n is a decision variable which selects the type of deck for a given span length in span n. r^ is the return of stage n; it represents the cost of the deck in span n. Single numbers are used to designate the deck stages. sistent with the bridge span numbering system. ports the decks of two adjacent spans. This is con Each interior bent sup Thus, each interior bent can be considered part of one downstream or of one upstream span. Consequently, the intermediate bent stages have been designated by two sets of two numbers (n,j). The first number in each set identifies the span number and the second, whether the bent is to the right or to the left of the span. As an example, for span n, the left bent is designated by (n,l) and the right by (n,2). The right bent of span n, called stage (n,2), becomes the left bent of span (n+1), called stage (n+1,1). stages have been identified by only one set of two numbers. The end bent 16 Variables associated with a bent stage, say stage (n,l) = (n-l,2), are defined as follows: Sn 1 1 *‘S an *-nPut state variable which represents the dead load contributed to the bent stage by the deck of span n. The first two subscripts (n,l) of the variable represent its relationship to the output state variable from deck stage n, i.e., s n,l The last subscript 1, identifies the dead load. sn 1 2 *-s an input state variable which represents the live load transmitted to the bent stage by the deck of span n. The last subscript of the variable, 2, identifies the live load. s i 9 i is an input state variable which represents the dead load n-x,z ,i contributed to the bent stage by the deck of span (n-l). s 199 n-i,z ,z is an input state variable which represents the live load transmitted to the bent stage by the deck of span (n-l). * Sn _-L 2 is an output state variable which represents total load transmitted to the supporting soil. d , _ n-1,2 is a decision variable which selects the type of bent for the input information. rn ^ 2 *-s t*16 return variable which represents the cost of the bent stage. All other symbols are defined when they appear for the first time. addition, a complete listing is given in Section 9.2. In 17 2.4 Basic Properties of the Model Associated with each stage of the dynamic programming model is a set of functions which define its behavioral characteristics (transition and return functions) and also its relationship to the adjacent stages (incidence identities). The convention used here to represent the func tional relationship of one variable,^ j ^An n^ or An n = n j^* to another, n > *s ^ith this convention in mind, j = for deck stage n, the incidence identity is: Xn The transition X„ n and the <2 -1) function is given by = ^(^,0 n nn ) = X" D n n ; n =1,2,...,N, (2.2) return function is, r n Where, = Xn+1; n = — p (X ,D ,d ); n = 1,2,...,N. n n n n (2.3) is used to represent the functional relationship between rn> X ,D , and d . n n n Because one portion of the problem deals with the allocar tion of length L into N spans, the serial branch of the model turns out to be an allocation boundary value problem with values at the boundaries defined by X^ = L, and X^ = 0. This model characteristic requires that a decision inversion be performed at stage 1 before any attempt is made to establish optimal policies. That is, 18 Xx = X L - D x = 0, (2.4) and therefore; Xx = Dx . (2.5) There are other transition functions for deck stage n, as follows: s -I — n, l 1 (D >d n, l n n i)» n — 1,2,... ,N. n-i (2.6) s _ — n ,2 n (D >d ,D ,. ); n - 1,2,... ,N. n ,2 n n n+l (2.7) Equation (2.6) simply shows that the total load transmitted by the deck, output state variable s* . , is a function of the decisions made about n,l the length and the type of deck of the span under consideration as well as of the adjacent span for the live load portion of the load. allel definition can also be given for equation (2.7). A par For the bent stages similar transition functions are developed. Sn, 1,1 ~ ^i,l,l(8n,l) " ^i,l,l(Dn ,dn ); n “ (2 .8) Equation (2.8) shows that the dead load contributed to bent stage (n-l,2 ) = (n,l) by the deck of span n, is a function of its length and type. Also, sXI j 2o y 1i = (TEll )ofaji1 9) = Xl,2 9 1 Ily fa) i 11 H * n = Equation (2.9) shows that the dead load contributed to bent stage (2.9) 19 (n,2 ) = (n+1 ,1) by the deck of span n, is a function of its length and type. The magnitude of the live load transmitted to an interior bent is primarily a function of the adjacent span lengths. the deck configuration does not affect the live load in the design of an interior bent. 1 9 = n , 1,2 It was assumed that Thus, 7 9^n n,i,2 n,l7> = 7 ?<Dn»Dn n,i,2 n n-l7>* n = 2,3,...,N. (2.10) Equation (2.10) shows that the live load transmitted to bent stage (n-l,2) = (n,l) by the decks of adjacent spans n and n-l, is a function of their lengths. Similarly, Sn,2,2 = ^n,2,2(sn,2) = * n,2 J Dn ,Dn+l}; n = shows that the live load transmitted to bent stage (2.11) (n,2 ) = (n+1,1) by the decks of adjacent spans n and n+1, is a function of their lengths. The return function (cost) for bent stage (n,2) = (n+1,1) is; rn,2 ^n,2 ^ n ,Sn,2,l,Sn,2,2,Sn+l,l,l,Sn+l,l,2,dn,2^* (2.12) It is necessary to introduce X^ in Equation (2.12) because, in general, the soil profile changes within the boundaries of the bridge structure. Thus, X , establishes the location of bent (n,2) = (n+1,1) in the n rererence plane that has been defined. Substitution of Equations (2.8), (2.9), (2.10), and (2.11) into Equation (2.12) results in; rn,2 - Pn , 2 < V V dn-Dn+l’dn+l>dn,2); “ = d>2 .... "-1- (2'l3) 20 For bent stage (1,1), one has sl, 1,2 " % , 1 , 2 (S1,1) " 1,2^°1^’ (2.14) and rl,l P l,l(Xl,s0,2,l,S0,2,2,Sl,l,l,Sl,l,2,dl,l)‘ (2.15) But S0 ,2 ,l S0 ,2,2 °* (2.16) therefore, by recalling equation (2.5) and replacing s.. . . and s.. „ 1,1,1 1,1,/ by their corresponding values, equation (2.15) becomes rl,l Pl,l(Dl ,dl,dl,l)* (2.17) Similarly, for bent stage (N,2) SN,2,2 ^N,2,2 ^SN,2^ ^N,2,£V’ (2.18) and since SN+1,1,1 = SN+1,1,2 = °» (2.19) rN,2 = ^ , 2 (XN ,DN ’dN ,dN,2^ = ^i,2 ^L,DN ,dN ,dN,2^ * (2.20) then because = L. It must be realized that equations (2.16) and (2.19) are not 21 necessarily valid. In the case of an abutment, for example, the founda tion could also resist loads imposed by the approach structure. However, since the loads contributed by the approach structure would be constant in the usual case, they can be taken directly into account and do not affect the optimization procedure. 3. 3.1 MODEL DECOMPOSITION Limits on State and Decision Variables As stated previously, the Dynamic Programming problem of Figure 2.1 is composed of a serial system to which branch stages are connected. The serial system represents a boundary value allocation problem. Taking advantage of the allocation nature of the serial system and with the specified minimum and maximum span lengths, all upper and lower bound values of those state and decision variables representing length can be determined before any attempt is made to compute optimal policies and returns. Define the following notation: (1) X^ = Minimum permitted value of the state variable (lower-bound); n “ 1,2 ,...,N-1. (M) X = Maximum permitted value of the state variable (upper-bound); n n — 1,2 ,...,N—1• = Specified minimum span length for all spans. *») = Specified maximum span length for all spans. At stage N, the state variable X jj, has a specified value which is the total bridge length, L. (1) Therefore, (M) “ L- (3a) The lower-bound value of the state variable X by; 22 n entering stage n is given 23 (1) n . a (1) X n = Max. (2) ; n = 1,2,...,N-1. (3.2) L - (N-n) • £ The upper-bound value of X^ is given by; (2 ) n <M) X n = Min. ; n “ 1,2,...,N-1. (1) L - (3.3) (N-n) • I For each stage the superscript (M) is defined by (M) X M a (1) - n X n + 1; n => 1,2,... ,N-1. (3.4) The superscript (m ) at each stage n is used as a counter for values of “ the state variable X . n „(1) Therefore, it is important that L , £ , and »(2) £ be so specified that equation (3.4) results in an integer number, i.e., L, (1) £ , and £ (2) each should have a value equal to some multiple of A . Any intermediate value of state variable X^ can now be computed as follows, X (m ) (1) n = X + (m-1) A ; n n n n = 1,2,... ,N-1; m n — 1,2,...,M. (3.5) Equations (3.2) through (3.5) define the complete range of each state variable at all stages except at stage N where the state variable has only one value given by equation (3.1). As in the case of state varia bles, upper and lower-bound values can also be computed for the decision variable D n associated with stage n. Define, 24 ^ = minimum value of the decision variable at stage n (lower-bound), for n = 2,3,... ,N. (Kfl) Dr = maximum value of the decision variable at stage n (upper-bound), for n = 2,3,...,N. Because stage 1 is the end stage (Dynamic Programming convention) and the problem is an allocation problem, X^ must have a value of zero as specified in Figure 2.1. Therefore a decision inversion is performed at atage 1 and, consequently, (ka) D.J, = (mx) ; m^ = k.^ = 1,2,...,M. (3.6) For all other stages, the lower-bound value of is given by the fol lowing equation: i£ Dn = Max. - Max* n — 2,3,... ,N; \ i (m ) (2)* X n - (n-l)- £ n (3,7) m = 1,2,. ..,M. And the upper-bound value of the decision variable / £ 2) Dn " = M i n -{ X is given by; n =s 2 ^ N* (m) (1) ; n - (n-l)- I m » 1,2 n n M. (3'8) Values for the superscript (K ) can be determined from the following n relationship; 25 (K ) (1) D n - D = — ------ K + 1; n = 2,3,...,N. (3.9) Again, the superscript (k ) at stage n is used as a counter for the different values of 11 (mn ) that correspond to each X^ . Any intermediate value of the decision variable at stage n is given by 0 0 Dn " (1) = Dn + (kn - 1) • A ; n = 2,3,...,N; ^ = 1,2,...,!^. (3 .10) Equations (3.6) through (3.10) define the complete range of values of (m ) the decision variable D associated with input state variable X n r n When optimal policies for a given stage e.g., n, are being deter mined (section 3.3), it is necessary to know the range of the decision variable D °f the adjacent span. The lower-bound value of this de cision variable can be determined as follows: n = 1,2,...,N-1; l l) (1) D ,- = Max. n+1 L - X (m ) (2) 5 n - (N-n-1) • 1 m = 1,2,...,M. n n (3.11) The upper-bound value is given by; (K } U V f 1 -**■ (2) n = 1,2 ,...,N-l; (m) (I) 5 (L - X n - (N-n-1)• ^ \ n The value of relationship: m n (3-12> = 1,2,...,M. the superscript (KQ+^) can be obtained from the following 26 K N-l. n+1 (3.13) Any intermediate value of this decision variable is given by; n = 1,2 N-l; (3.14) K n+1* The preceding discussion and development of equations were based on the assumption that minimum only specified constraints. and maximum span lengths were the These relationships can be modified and used also when, in addition, one or more of the spans has been specified with a fixed length or location. This application is demonstrated in Section 9.1.3.3. 3.2 Optimal Policies Decomposition is a usual approach in the solution of complex prob lems. Decomposition breaks the problem into a series of smaller prob lems with more easily attainable solutions. The total solution is ob tained by combining the results from the smaller problems. This ap proach of multistage problem solving is implemented with Dynamic Pro gramming. The model of Figure 2.1 was decomposed into N simpler models. Each of them represents a given span in the bridge system of Figure 1.1 and each is a three stage (one deck and two bents) diverging branched, Dynamic Programming problem. ming model of span n. Figure 3.1 depicts the Dynamic Program 27 T—1 A CM A r-H d CO rH * CM t—4 A # CM C>J I—1 • + #» d £ d 09 CO CO CM •> H CM r-H CM * m r-H H rH * * 1 d d d CO CO CO CM •» rH *% r-H + £ U> n+1,1 n-l, 2 n, 1 n ,2 Figure 3.1 Dynamic Programming Model of Span n. It must be pointed out that decomposition does not alter the basic properties of the total model of Figure 2.1 and equations (2.1) through (2 .20) still hold. Figure 3.2 depicts the dynamic programming model of span 1„ Adopting the conventional approach and terminology one can proceed to determine the minimum cost return function for stage (1,1) as follows: 28 fl,l(Dl ,s0 ,2 ,l,S0 ,2 ,2 ,8l,l,l,sl,l,2) m *n { P1,1(D1,S0 ,2 ,1’ dl.l S0 ,2 ,2 ,Sl,l,l,Sl,l,2 ,dl,l) ‘ (3.15) ' 1=0 CM <N rH CM rH 10 CM CM CM rH CM 1,2 ‘1,1 Figure 3.2 Dynamic Programming Model of Span 1 Note that the state variable This is because X^ = does not appear in equation (3.15). due to the decision inversion performed at stage 29 1 as indicated by equation (2.5). Recalling equation (2.16), equation (3.15) is modified with the following results, fl,l(Dl ’sl 5 d l,l 1 ' (3.16) Equation (3.16) represents a three state one decision optimization stage. To set up summary tables for each stage, the following conven tion will be adopted: Different values of state and decision variables will be designated by the symbols already defined with the addition of ( V superscripts, e.g., , is defined to represent the k^th value of D^,. Equation (2.8) gives s. . , as a function of D . , and d... (k ^ i,i,i i i each value of D- = D, 1 1 For , T, different values of d. can be considered. * k]L 1 That is, there exist T, different types of bridge decks which can be l used for the given span length. It has been assumed that for each value (kx) of = D^ , the configurations and also the costs of these T^ ferent types of decks are known. Consequently, the different values of sn . ■, can be obtained from equation (2.8). 1,1,1 can now be labeled as dif These values of s. . . 1,1,1 follows: (k^tj) sl,l,l = Sl,l,l ’ fcl = k = 1,2,...,Kr (kj.tj) s., , . is now defined as the dead load supported by the 1 ,1,1 1 1,1 (3.17) left bent of span 1, and produced by the t^th type deck when the k^th value of 30 (kx) span length is being as a function of D.. 1 considered. Equation (2.14) represents s^ ^ ^ The values of s. . , are designated by, 1 , 1, z (kx) Sl,1,2 = Sl,l,2 J k l = * (3 '18> Then, knowing a particular value of D.., the corresponding value of s. . , 1 1,1,/ can be readily evaluated. The values of can be determined from equation (3.2) through (3.5), and (3.6). (k1 ,t1) For each value of j different types of bents can be used. (kx) and al l 2 = a1>l>2 , Again it is assumed that either these bents have already been designed or can be designed and that their individual costs are known. Thus, the different values of the decision variable d^ ^ are represented by, (kj j ^ d i,i = d i,i jU j ) ; ui k “ 1,2 ,,**,uk 1,t1; ti = = 1 ,2 ,...,^ . (3.19) Finally, the stage return (bent cost) has been represented by an(i the stage's best return by f^k ^ ,t:i’ \ where the aste risk (*) is meant to indicate that the return has been optimized over the variable u^. Table 3.1 is a partial summary table for stage (1,1). By definition a summary table includes only the optimum values of component return. Table 3.1 gives only T^ minimum returns corresponding to the T. values of s. . which in turn correspond to the first value 1 1,1,1 TABLE 3.1 A Partial Summary Table for Returns of Stage (1,1)) Span 1 1.1.1 (1,1) ,«> 1 Sl,l,l (1,2) -<1 .2) ’1,1,1 ,(D * \ 1*1. 1.1^ 5(1) j (1»1»Uj ). dl,l ’ a (1) j(l,2,u.). dl,l » U1 1,1,2 1,1,2 j(1,Tj) Hd , ^ ) a( D ,(1,T ,u ) dl *1,1,1 *1.1.2 dl,l ■ 1,2 ,...,K^ . o .i .d __Li__ i « it a u 1,2,...,U1j2 m 1.1 f (l,Tx,*) ! 1 and £l,l ■ 1,2,... ,U, I d l ' d lkl,tl>i h (1 , 2 ,*) (l,Ti,tti) 1,2..... 1,Xj rl.l (kl,ti,U!) d 1.1 .(1,2,u x) 1,1 i * "l (i,i,*) r (l.l,ux) rl,l 1 , K x»cl (3.1.5) all kj, and t1# ” 1 .2 .---.Tk . r1 1 ■ r^k J*tl,Ul\ and all k^ . si,i,i “ ®iki*il)» for a11 for all and (3.1.6) (3.1.2) h * and kl* (3,1*3) s(ki, ti,*) ■ •1 .1.2 ' *ik i!2 ' £or al1 k r 1,1 u> (3.1.4) for all t1, and k 1 . (3.1.7) 32 of D . Equations given at the bottom of Table 3.1 can be used to gene rate all other minimum returns, for every value of D^. The minimum cost return function for stage (1,2) with respect to the feed it receives can be written as; ;n K Pl,2(D1’S1,2, : £1,2(D1’S1,2,1,S1,2,2,S2,1,1,S2,1,2) “ m^n { V 1,2 < Sl,2,2,S2,l,l,S-2,l,2,dl,2) ' From equations (2.9), (2.11), * (3.20) (2.8), and (2.10), recall that, 1 ,2,1 = ^l,2 ,l^D lsdl^’ 1 ,2,2 = ^L,2,2 ^D 1,D2^ * (3.21) (3.22) (3.23) 2 ,1,1 = 2 ,1,2 = $2 ,1 ,2 (D2 ,D1)# (3.24) The values of s, _ , have been labeled similarly to those of s. - 1 . 1,Z ,1 I,1,X , It is anticipated that, in most cases, corresponding values of s. 1 1 1 1,1 and s. _ 1 will be identical. 1 , Z , 1 To determine values for to know the different values of The values of 2 2* S2 1 1* and S2 1 2 * £fc £s necessary and the corresponding values of d can be determined from equations (3.11) through (3.14). These equations, by their nature, generate the largest possible decision set. That is, if one moves to the next span and with equations (3.2) 33 through (3.5) calculates each possible value of the state variable X, then, if each decision set corresponding to every value of X is calcu lated, close scrutiny of these decision sets reveals that every calcu lated decision set is a subset of the decision set generated by equa tions (3.11) through (3.14) for this span. Therefore, by using equa tions (3.11) through (3.14), one is always assured that all values of the decision variable D for the span adjacent to the one being consi dered have been investigated for any increment in the value of the state variable X of the adjacent span. Now let the values of the decision set be represented by: (k s) °2 = D2 5 k2 = 1,2 9 • (3.25) • • 9 Then, as in the case of d^ and with similar assumptions, different values of d2 can be represented by (k 2>ta) d2 - d2 ; 1 ’2 k2 - 1,2 9 • • • 9 K, 2 ' (3.26) Now the values of s1 „ 9 are given by o v V sl,2,2 " S l,2,2 ! k2 "" 1,2 9 \ The values of s9 . ,, by Z , 1 51 - 1.2 • • • 9 (3.27) 34 <k 2»t2) S2 ,l,l = s2 ,l,l ; *2 " 1>2 »*“ »Tk S 3 1&2 and those of s. .. 192 ,• • • (3• 28) by Z 9 ±jZ (k3,lc1) S2,l,2 = S2,l,2 ’ k2 = 1>2 >*--»K2 5 k x = 1,2,...,!^. As in the case of 1,2 " (3.29) ^ let the values of d^ ^ be represented by 1,2 ’ T1 k 1,tl ,ks,t2 and all t2 ,k2 ,t^, and k^. (3.30) Where vn designates distinct values for decision variable dR ^ . Also, let the values of r1 9 be designated by i.9Z G rl ,2 " rl ,2 W ^ ’V V i ) • 17 = I_V _____ V ,t 5 vl 1,2 ,**,,Vk 1,t1,k3,t2 all t2 »k2 ,t^, and k^. and (3.31) Equation (3.31) gives r^ ^ as a function of D^,d^,D2 »d2 > and d^ ^ . Equation (2.13) represents r^ ^ also as a function of X^. of locates the position of bent (1,2). Each value But because a decision in version was performed at stage 1, by equation (2.5) these bent lo cations are known for every value of D^. has not been included in equation (3.31). Therefore, the variable X^ 35 Now let the values of f- , 1 2. be represented by (k^t^kgjtg,*) 2 = fi 2 ’ for a11 t2 ,k2 ,tl’ and k l* Table (3.2) is a partial summary table for stage (1,2). (3.32) The equations given in the table can generate all other minimum values of the stage return. The return of stage 1 in Figure 3.2 is given by rl = Pl (Dl»d l) * (3*33) Let R^, the total return for span 1, be defined by the following equa tion after branch absorption has been effected: Substituting for each state variable in equation (3.34) the correspond ing decision variables from equations (2 .8 ) through (2 .20), the following results: £l,2(Dl,dl’D2*d2)- (3,35) TABLE 3.2 A Partial Summary Table for Returns of Stage (1,2), Span 1 X 1=D 1 dl Df > d (l,l) • • o<» • Sl,2,2 S2, 1,1 ,(!,!) sa , D 1,2,1 (1,1) 1,2,2 ,D 1,1 sa , D 1,2,1 • • a (1»1) 1,2,2 • • ) ’a.i) 1,2,1 'u ,d 1.2,2 d a,2) • ;a,i) D<» D l * D f 1); k l II O d2 " S1.2.1 • • dl = d2 D2 d f i ’V ; " sl,2 ,1 t2 = g(l»2) 2,1.1 • • d i,2;vr 1,2,**,vi,1,1,1 d i,2 ;vr 1J2’--’v i,i,i,2 •• • •(l.l.l.Ti.v^ 3 d ■*i> 2,]L,1 d l,2;Vl=ls2,',,Vl,l,l,T1 (3.2. 1) 1,2,... ,Tfc , and all k^ (3.2 .2) D ^ 2^- k » 1, 2,...,K2 2 * 2 2 rl,2 (l»l»l»2,v1) = 1, 2,... h 4 d l,2 (1,1,1,1,Vl) (3.2 .3) (3.2 .5) v x) (l,l,l,l,v ) 1,2 (1,1,1,1,*) 1,2 (l,l,l,2,v ) 1,2 • • (1,1,1,2,*) 1,2 • • ^(l,l,l,T1,vl) 1,2 ’(1,1,1,T ,*) 1,2 sl,2,2 = £or a U V s2,l,l ‘ f°r 311 t2 ’ a“d k2 and kl (3.2.6) (3.2.7) d 1,2 = d^i.ti.ka.ta.vi) » 1,2 - 1,2,...,Vk and all t2 >k2 ,ti , and k^ 1 , 2 , . ,Tk , and all k2 (3.2 .4) ti) = s ^k i’ for all t^, and k. L 1,2, 1 » / i»k 2»*-3» *) | (kjjt = mxn 1,2 1,2 V1 f 1,2 1,2 »t i»ka»ts» (3.2.8) (ka jtj ,ks ,t2 jV j ) , for all v 1,t2 >k2 ,tx, and k L 1,2 (3.2.9) , for all t2 ,k2 ,t1, and ^ (3.2.10) OJ O' 37 Then, the total minimized return for span 1 is fl (Dl ’D2 ’d2) = n | R1 (D1,d1,D2 ,d2 ) | . (3.36) d Let the values of r^ be designated by — ^(0^,d^) — r^ ; t^ — 1,2,...,T^ ; k x = 1,2,...,^ . Also let those of (3.37) be given by (k ,t ,k ,t ) Rj_ = R1 (D1 ,d1,D2 ,d2) = ^ 1 1 2 2 , for all t2 ,k2 ,t^, and k^. (3.38) Then the values of R^ can be obtained from the following equation (k1,t1,ks ,t8) ®1 (kl,t1,*) = rl + *1,1 (k1,t 1,kaSts ,*) + *1,2 for all t2 ,k2 >t1 and k^. (3.39) The values of f^ are given by; (kjj^jkgjtg) f^ = min * j (kj,tjjkg,t3) ) ^ R^ ^ t^ = 1,2,...,T^ , and I all t2 >k2> and k^. (3.40) Equation (3.40) yields all minimum values of the returns for span 1; They are functions of decision variables D^,D2> and d2 * Table 3.3 is a 38 partial summary table for the returns of span 1., Equations given at the bottom of Table 3.3 can be used to generate all other minimum re turns. The selection of span 1 minimum return values yields the cor- responding optimal decisions (d^). This enables the minimum stage re turns for all stages of span 1 to be determined as shown below; K k x = 1,2 (k,1* ,*,k_,t_,*) t2 - 1,2 9 • • • (3.41) 1• y T, , and all 2 k2 , and ^ (3.42) (kx,*) r^ = r^ ; for all k^. Let f (3.43) represent the total minimized span 1 returns. Although these returns are functions of and one might assume at this point that another minimization over is necessary, it must be remembered that a decision inversion was per formed and that in reality the span 1 minimized returns are functions of state variable rather than of decision variable D^. Therefore, no additional minimization of the total cost isvneeded as the only other variables associated with this span are D2 and d^ and they are part of span 2 which will be considered when the sum of the returns from spans 1 and 2 is minimized. Figure 3.3 depicts the dynamic programming model of span 2. Stage (2,1) of Figure 3.3 has already been considered as stage (1,2) in span 1. The minimum returns of this stage are given by equation (3.42). TABLE 3.3 A Partial Summary Table for Returns of Span 1 V °2 D1 D<1> tl - 1,2....T l Tl D*1* dj1,tl); tL - 1,2... D 11J di1,tl)5 fci “ 1,2,...,^ D 1 “ “l ^ l- D<1} d2 d^1,1) rj1 *6 ^ d*1,2) r^'V fj1^!'** f d*1,Ti* rj1’*!* f*1^!*** jU.t^l.Tj,*) gU.t^l.Tx) r (3.3.1) 5 kl " d ^ i * * ^ ; tx « 1,2,...,Tk , and all ^ (3.3.2) R *1**!*1 ’1* fU,*,l,D (l,t1,l,2) f (l,*,l,2) f(l,*,l,Tj) (3.3.6) ^ ■ f p ^ ,t:i* * \ for all t^, and kj fl,2 * fl,2* 3 * *' ^ ,7) for a11 t2»k2 ,tl* (3,3* and k, Dj " D ^ 8 » kj ■ 1*2,... ,K2 (3.3.8) R 1 “ rl + fl,l + f1,2 (3.3.3) (3.3.9) R1 " R^k i*£l*k 2,t2), for all t2 ,k2 ,t1, d2 - d^ka»ta>; ^ (k rl “ rl 1 » l,2,...,Tk , and all k2 8 (3.3.4) ) 1 » for a11 fcl* and kl and k, 1 f (^i»*»k a»tg)_ min j nOCx.tj.kg.tg) j (3.3.5) 1 t j 1 1 f j all t2 »k2 » and k i (3.3.10) w VO This equation can now be written as follows: (kjjkgjtg) f2 1 “ f2 1 5 t2 “ 1»2 »,**>Tk * and a11 k 2 and k l* The minimum return function of stage (2,2) is given by f2 ,2 (X2 ’S2 J2,l,S2,2,2’S3,l,l,S3,l,2) ** m *n I P2,2(X2 ,S2,2,1 2 ,2 * S2,2,2,S3,l,l,S3,l,2,d2,2) ^ * (3.45) Recalling equations (2.8) through (2.20), the minimum return function for stage (2 ,2) can also be written as follows: f2 ,2 (X2 ’V ’W d2 ' W [".in { P2 , = mdn P2,2(X2'D2 ’d2-D3 ’d3 ’d2,2) > ‘ (3-46) 9.9 * 2,2 Adhering to the convention defined for designating values of and d^, equation (3.46) becomes _ 2,2 K - W W * * 2,2 ■ C3 ’ k 3’ k^ 3 1,2 ,...,K^ , and all t^ and k^; m^ = 1,2,...,M. (3.47) Equation (3.47) gives the minimum returns of stage (2,2) as functions of X2 >D2 ,d2 ,D2 , and d^ where the optimum decisions concerning the types ic of bents to be selected, (d_ 9), have been determined. 41 For the return of stage 2 one writes, (m2 ,k2 ,ts) r2 ” ^2 ^x2 ’^ 2 ,d2^ e r2 > — and all > and . (3.48) The total return for spans 1 and 2 is given by the following equation j ®2 "" R2^X2 ,Dl,D2 ,d2 ,D3 ,d3^ “ ^2^X2 ,D2 ,d2^ + f2,2^X2 ,D2*d2 ,D3 ,d3^ + (3.49) £l(D l,D2 ,d2 ). CM CM CM CM CM CM CM CM CM CO CO 2,2 2,2 2,2 2,1 Figure 3.3 Dynamic Programming Model of Span 2 42 Combining equations (2.1) and (2.2) results in “i - W Therefore, V - (3.50) - V x2 can be eliminated from equation (3.49), thus R2 ■ W W W W W , t 3 W > + f2,2(X2>D2>d2 ’D3 ’d3) + (3.51) Now the values of R ( m a j k a = W can be represented by , k g , t 3 ) _ r 2 (m a > k 2 , t g ) , ( m g , k s 2 , t 2 , k 3 , t ) 2,2 f (m2 ,k3 ,t2) ^ for aii and m.;. (3.52) The minimized returns for two spans are given by the following equations; f2 (X2 ,D2 ,D d )= min R2^X2 ,D2 ,d2 ,D3 ,d3) (3.53) 2 and f(ms ,ks ,*,k3 ,ta ) _ r|lln (mg,kg,tg,k3 ,t3 ) 2 t2 (3.54) 1 j2 j• *• jTj^ j find all jk^ j1&29 ^2 * s Equation (3.54) yields the optimum decisions for stage 2 , ^ 2), as well as the minimum returns from spans 1 and 2. Consequently, the return from span 1 becomes; f 1 = f (D ,D ) = lK V 2J 1 = f 1 for all k jkg, and n^. (3.55) Also the returns from stages 2 and (2,2) become; r for all k0 and m„, 2 2 (3.56) £ _ £ (ma>kg>*>k3 ,tg,*) ■2j2 -2j2 , for all t3 ,k3 ,k2 , and m, (3.57) 2 = r^m8 ’R2 ’ \ 2 Substituting equations (3.55) through (3.57) into equations (3.54) and deleting the asterisks (*), one obtains; and equation (3.53) becomes f2 (X2 ’D2-D3-d3) " P2 (X2 ’D2 > + f2,2(X2 ’D2 ’D3-d3) + fl<X2 > V ’ <3 '59) Equation (3.59) represents the total minimized return function of spans 1 and 2 , where f^(X2 ,D2) is the minimized return function of span 1 and P2 (X2>D2^ + ^2 2^X2 ,D2 ,D3 ,(*3^ *S t*ie contr^ ut^on °f span 2. Concerning the decision variable D2 > equation (3.59) represents the sum of the re turn functions of the two adjacent spans which has not been minimized over D2 as yet. Thus, to minimize the return function over the variable D2 one must write; F2 * P2 « 2 - D3-d3 ) = "J” j W W V j “ ”^ n j £2,2CX2>I)2'D 3'd3 ) + fl < W P2 <X2 - V j- <3 ‘60> and in terms of values, one has; I F2 - min Cm 3"k s) r (m 3 .ka .k3.t3) C » v V + f + fj I ; 2 k2 = 1,2,...,K2 > and all and m 2 = 1,2,...,M. The optimum decision variable (D2) is determined for each value of (3.61) 44 ic from equation (3.61). Once (D^) is known, equation (3.50) yields (1)^) for each value of X^. Consequently, equation (3.55) becomes, (m2,*,*,*) ; m2 53 1,2,...,M; f1 - f 1 (3.62) equation (3.56) results in (m2,*,*) * m2 “ r2 ~ r2 (3.63) equation (3.57) becomes (ma,*,*,k3 ,ta,*) f2 2 = ^2 2 * for *"3 and k3 ’ and m2 ’ (3.64) and, finally, equation (3.58) becomes, (m2 ,*,k3,t3) f2 ” f2 ’ f°r a11 and m 2" (3.65) (ms) For a specified value of X^= X2 , equation (3.62) results in a single minimum return value for span 1. Similarly, equation (3.65) gives minimum return values for spans 1 and 2 as functions of the length and the type of deck in span 3. Table 3.4 is a partial summary table of returns from spans 1 and 2. Equations given at the bottom of Table 3.4 can be used to generate all other minimum returns. Notice that from equations (2.1) and (2.2) X2 = X^ = X^ - D^, therefore (3.66) TABLE 3.4 A Partial Summary Table for Returns of Spans 1 and 2 3 __________ ^2_________ X2(1) d 'V; V P3 1.2.....^ d3 fl r2 _______ f2.2 D<1) d f " 1* fO.*.k..*) ra.k,.*) x f > »*•>; kj-1.2 d (D d (1.2) fa,*,ka,*) r(l.k„.) f2 ^2. f(l.k,.l.D , < W . 1 > £(l,ks,*,l,2,*) f(I.k..l.2) F U,*,1,2) • • • • • • • • • • • • • • • • • • • • • • • • • • x a> D o*>i V 1 > 2 .... ^ Xj = X ^ V ; nij « 1,2 D a > d a,Tx )£a,*,k2,*) M. (k ) °2 = °2 2 J k2 = 1,2,...,K2 , ra,k2,*) • £(i,ka,*,i,ii ,*) ,<1,^,1^ ) ^i.m.i,) (3.4.1) r£ = r faa’k a ’* \ (or all k2> and m2 . (3.4.6) (3.4.2) ^m a»^ca**»^3»t3»*^ f2 2 = f2 2 * f0r a11 t3 ,k3 ,k2 ’ and m 2 . (3*4 '7) D3 = d k3 = 1>2 >---»k3 - = d^k 3,t:3^* t = 1 2 3 3 * 3 (3.4.3) T 3 and all k_. 3 ® f^” 2’ *k2> \ for all k2 , and i y (3.4.4) f2 = for all t ^ k ^ k ^ and n y F (ma >*»k3,t3) _ min | f (m2 ,ka,k3,t3) | fQr 2 . rC, k2 ' ,, . , , all tgjkg* and i y (3.4.8) (3 .4 .9) (3.4.5) 4 L? n- 46 Proceeding to span n (Figure 3.1) according to the method out lined above, the total minimum return function of all downstream spans, including stage (n,l) of span n, is obtained as follows; f - (X . ,D ,,D ,d ) = min P (Xn •,,D ,d ) + n-i n-i n-i n-i n-1 n-1’ n-1* n ’ n , n-1 £n-l,2<Xn - l - V l ’dn - l " V dn> + F„-2<X„ - l ' V l ’dn-l) > (3.67) from which F n-i (X n-i ,D n d ) = mm n D f n-i (X n-i ,D n-i D ,d ) n (3.68) n n-1 but X , = X = X - D from equations (2.1) and (2.3), therefore, n-i n n n F , (X n-i n-i ,D , d ) = F n n n-i (X jD ,d ), n n (3.69) n and its values are given by, (m ,k ,t ) F . = F , ; t ® 1,2,...,T n-1 n-1 n k , for all k n n amd m . n (3.70) The minimum return function of stage (n,2) can be written as follows; fn , 2 < V V d„-IW d,rH) min Pn ,2(Xn ’Dn ’dn ’Dn+1 ’dn+l ’dn ,2) d n,2 (3.71) and its values as, 47 f f(mn>kn ’tn-kn+l>tn+l-*) n,2 n,2 • f°r a11 tn+l *kn+l*tn *kn ’ (3.72) and m . n The return function of stage n can be written ; r n (3.73) = Pn (X ,D ,d ), n n n n and its values as, (m ,k ,t ) r n = r n (3.74) , for all t ,k , and m . n n n Now define R n = R (X ,D ,d . D , d ) = P (X ,D ,d ) + n n n n n+i n+l n n n n (3.75) f .(X ,D ,d ,D ,d ) + F (X ,D ,d ), n,2 n n n n+i n+1 n-l n n n and its values as, n = D (mn ,kn ,tn ,kn+l,tn+l) n » f°r a U n+1 * n+1 * n * n * (3.76) and m . n The minimum retura function of all n spans is given by £n < W V l ’dn+l> min d n and its values by Rn (Xn ,Dn ’dn ,Dn+l,dn+l) * (3,77) 48 £n - W - V W W - f„ • f°r a U k n+i ,k , and m . n n Now the minimization of equation (3.78) over minimum return from n spans. W W F = F W “ "Jn n ‘n+l- (3.78) results in the total Thus ; W - V W W j - (3-79) also , n < V W W n , for all t ..,k ,.,and m . * n+1 n+1* n (3.80) Finally, Figure 3 . 4 depicts the dynamic programming model of span N. Proceeding to this span according to the method outlined; the mini mum return function of all downstream spans, including stage (N,l) of this span, is given by FN - 1 = ^ - l ^ - l ^ N ’ V = FN - 1 (XN ,DN ,(V ' (3.81) For stage ( N , 2 ) one has, fN,2 ^XN ,SN,2,1,SN,2,2,SN+1,1,2,SN+1,1,2^ “ “j11 J N,2 ® N * N,2' SN , 2 ,1,SN,2,2 *SN+1,1,1,SN + 1 ,1,2,dN,2^ j ' (3.82) 49 H CM CM f-4 rH CM N,1 N,1 CM N,2 N,2 N,2 Figure 3.4 Dynamic Programming Model of Span N But, by recalling equations (2.19) and (2.20), equation (3.82) can be written £N,2(L>Dr V “ "7 j PH^ L-DN-dN"dN,2)j- H,2' and the values of this return are given by <3'83> 50 S *N,2 - W * 0 fH,2 ! ‘n 1,2 TkN kjj = 1,2,... ,K^ ; ; mjj ® 1. (3 .8 4 ) The return for stage N is given by rN - P (L ,^ ,^ ) , (3 .8 5 ) and its values by <V rN kH’tH) rN , for all t ^ k ^ , and ra^ = 1. (3.86) Define; = RH ® ‘,DH ’dlP “ % ( L >DH )dN ) + fN,2 *L,DN ’dN^ fn -i (l ’dh > V • (3'87) = 1. (3.88) and the values of R^, as Rjj “ Rj, ; for all tN ,kN> and Then, the minimum return function can be obtained, thus fN(L’V “ ”ln j V ^ W - j (3-89) ^n The values of this function are given by fN = fN ; for all 1^ and « 1. (3.90) 51 liquation (3.89) gives the minimum total return from N spans as a function of the length of span N,(D^), where the optimum values of k the decision variable d^,(d^) have been ascertained. f^ over the decision variable Minimization of results in the minimum bridge cost. Mathematically, F„(L ) = min jf (L,DN ). °N / j (3.91) ' * Equation (3.91) also yields optimum decision (D^) . Then, from equa- *k tions (2.1) and (2.2), is determined. downstream and obtain all decision variables: n Optimum span lengths * ■k D Now one can easily move , for n = 1,2,...,N-1; decks types d •k types d^ ^ > f°r n = 1»2,...,N. n , for n = 1,2,...,N; and bent 4. ALGORITHM The developments of the previous sections can now be presented in concise form as a set of rules to carry out the optimization procedure. This set of rules, when arranged in an iterative form, is also called an algorithm. To condense the explanation of each step of the algorithm, the fol lowing definitions must be stated: The left bent in each span is cal led bent No. 1, and the right bent is bent No. 2. The term "geometrical properties of the bent" is used to refer to some of the data needed for the design of a bent structure. For example, data such as bent height, soil properties, types of bents which can be used at a given location, and available construction materials, are all considered part of the geo metrical properties of the bent. The algorithm is presented in two different forms: In step by step mode where the particular operation in each step is fully explained and in a macroflow chart form (Figure 4.1) where the interconnections of the algorithm steps are clearly depicted. The step by step description follows: 1. For each value of span length in the specified range (increment ed from minimum to maximum span length) design as many bridge decks as possible. Suboptimize these decks for each span length (See Section 9.1.2)and enter the resulting information in a table called Deck Table. 2. Consider span No. 1. Determine the values of the state 52 53 variable, X, (equations (3.2) through (3.5)), and the corres ponding set of the decision variable, D, (equation (3.6)). Also determine the set of values for the decision variable, D, of the adjacent span (equations (3.11) through (3.14)). 3. For the fixed location of bent No. 1 in this span, determine the geometrical properties of the bent. 4. For every value of span length and corresponding deck types from the Deck Table, design as many bents as possible. Select minimum cost bents (optimization over the decision variable which represents bent types). 5. Set up a summary table for this bent. 6. Consider bent No. 2 in the span being designed. Determine the geometrical properties of the bent for every value of X. 7. For every value of X, and corresponding span lengths, adjacent span lengths, and corresponding deck types from the Deck Table, design as many bents as possible. Select minimum cost bents (optimization over the decision variable which represents bent types). 8. Set up a summary table for this bent. 9. Perform branch absorption for the span under consideration, i.e., set up a summary table where the cost column represents the combined cost of all downstream components including the deck component for the span under consideration. 10. Optimize over the decision variable, d, that represents the deck types. Set up a new summary table. 11. Consider the next span. 12. Determine values of X (equations (3.2) through (3.5)), 54 corresponding values of D (equations (3.7) through (3.10), and D's of the adjacent span (equations (3.11) through (3.14)). 13. Repeat steps 6 through 10. 14. In the resulting table of step 13, perform an optimization over the decision variable, D, representing the span length of the span under consideration. Set up a new summary table to be used in the next branch absorption. 15. Repeat steps 11 through 14 until the last span is the next span to be considered. 16. Consider the last span. For the fixed value of the state varia ble, X, determine the corresponding set of values for the deci sion variable, 0. 17. Consider bent No. 2. For the fixed value of X, determine the geometrical properties of the bent. 18. For every value of span length and corresponding deck types from the deck table, design as many bents as possible. Select mini mum cost bents. 19. Repeat steps 8 and 9. 20. Select the minimum total bridge cost from the resulting table of step 19. to 21. Also select the last span configuration corresponding this cost. With the selected last span properties, trace through the sum mary tables and determine the optimum bridge configuration cor responding to the minimum total cost. The application of the algorithm to some example problems is demon strated in Section 5. 55 START CREATE DECK TABLE BRANCH ABSORPTION CONSIDER DETERMINE X, D, AND SPAN NUMBER 1 THE ADJ. SPAN D's CREATE SUMMARY TABLE FOR BENT NO. 2 IS THIS SPAN NUMBER 1 ? YES IS THIS THE OPTIMIZATION IAST SPAN? OVER DECK TYPES CREATE SUMMARY TABLE FOR BENT NO. 1 YES SELECT OPTIMUM IS THIS SPAN BRIDGE STRUC. NUMBER 1? YES CONSIDER THE NEXT SPAN END OPTIMIZATION OVER SPAN LENGTH FIGURE 4.1 MACROFLOW CHART FOR THE ALGORITHM 5 EXAMPLE PROBLEMS In this section the application of the optimization method developed and the resulting algorithm are demonstrated. To use the algorithm, it is necessary to adopt sets of criteria for the structural design of the deck and the bent components of the bridge. In the following examples the design specifications of the Louisiana Department of Highways (28) are adhered to. To implement the structural design of the bridge components efficiently, two computer programs developed at the Louisiana Department of Highways were utilized. The deck design program is used in the analysis, preliminary design, and cost evaluation of composite bridge decks, consisting of AASHO prestressed concrete girders and reinforced concrete slabs. The bent design program gene rates minimum cost pile or column bents for the total applied dead and live load. The required data by both design programs include information such as properties of structural elements to be considered, strength levels, terrain geometry, bridge geometry, soil conditions and unit costs. The design theory for both programs is based on the American Association of State Highway Officials (1) and the Louisiana Department of Highways (28) specifications. The design theory and the details of the deck design computer program are fully explained in a publication by the Louisiana Department of Highways (29). The first example problem considered is a small bridge of three spans. With the exception of the structural design of the deck and the 56 57 bent components, the problem is worked by hand. Every step of the algorithm such as construction of Dynamic Programming tables, branch absorption, and optimization of each stage over deck types and span lengths is demonstrated. In the subsequent two example problems, implementation of the algorithm is accomplished through the use of the computer program developed. In these problems, only the problem statement, selected parameters and the final results are presented. 5.1 Three Span Bridge Consider the three span bridge of Figure 5.1. The general data for the prestressed concrete girders and the reinforced concrete slab for the deck components are summarized in Table 5.1. the data required in the design of pile bents. Table 5.2 gives Table 5.3 summarizes the information on ground profile and soil data obtained from a typical boring. The ranges for the parameters considered that affect bridge economy are given in Table 5.4. The algorithm starts by designing and suboptimizing all bridge decks in the specified range of minimum to maximum span length. Table 5.5 summarizes the information on the suboptimized decks. For span number 1, equations (3.2) through (3.5) generate all values of state variable as given below: Beginning of Bridg End of Bridg 180' sta. 24+76. Bent No. 1 Span 3 Span 2 Span 1 Compacted Fill sta. 26+55. Bent No. 2 Bent No. 3 Compacted Fill Bent No. 4 26'-6 l'-8 l'-3 Clear Roadway Elevation 50.0 prestressed concrete girders — I I FIGURE 5.1 LAYOUT AND DECK CROSS SECTION OF THE 3 SPAN BRIDGE pile bent 59 50 -CD _X^ = Max. = 50, \ 180 - (3-1)(80) = 20 80 (M) X1 = Min. = 80, \ j 180 - (3-1)(50) = 80 M = _8^ r _ 50_ M 10 = ’ (1) Xx = 50, (2) Xx = 50 + (2-1)(10) = 60, (3) X = 50 + (3-1)(10) = 70, (4) Xx = 80. As the problem is an allocation boundary value problem, performing a decision inversion results in; (1 ) Dx (1) = Xx (2 ) Dx (2 ) = Xx (3) (3) D, = XL (4) D1 = 50, - 60, = 70, (4) " X, - 80. Using equations (3.11) through (3.14) and for every value of the state variable X^; the following sets of values for the decision variable are obtained; 60 (1) for Xj_ = 50; 50 (1) D2 = Max. = 50, 180 - 50 - ( 3 - 1 - 1 X 8 0 ) = 50 80 (k2) D2 = 80. = Min. 180 - 50 - ( 3 - 1 - 1 X 5 0 ) 80 - 50 2= . , IT- + 1 = 4’ (1) D2 = 50, (2 ) D2 o 50 + ( 2 - 1 ) ( 1 0 ) = 60, (3 ) D2 = 50 + ( 3 - 1 ) ( 1 0 ) = 70, (4) D2 = 8 0 .. = 60; For 50 (1) D2 = 50, = Max. 180 - 60 - ( 3 - 1 - 1 ) ( 8 0 ) « 40 80 (Ka) D2 - 70, = Min. 180 - 60 - ( 3 - 1 - 1 ) ( 5 0 ) _ v 2 70 ..-„.50,.. + i = 3 10 3 ’ 61 (1 ) D2 = 50, (2 ) D2 = 50 + (2-1)(10) = 60, (3) D2 = 70. It is obvious that as the value of X^ increases the number of values and the maximum value of decision variable D2 decrease. for = 70; = 50, Therefore, = 60, and for X ^ ^ = 80; there is only one value for D2 which is; = 50. With the values generated for X^, and D2> Table 5.6, which is the Dynamic Programming Summary table of Stage (1,1), bent number 1 in Span 1, is constructed. The values of the return variable r1 1 1,1 (bent cost) represent optimized returns of stage (1,1); that is, opti mization over d., 1 has already been performed as the bent design pro1,1 gram selects minimum cost bents. * The d^ ^ column in Table 5.6 represents properties of the selected bents in the following format; pile diameter/ no. of piles/ penetrated length of pile/ height of bent above ground. Table 5.7 is the summary table for the optimized returns of bent 2 in span 1, stage (1,2). Absorption of stages (1,1) and (1,2) into Stage 1 (deck stage) results in Table 5.8. Table 5.9 is then obtained by selecting the minimum cost entries and the corresponding rows from Table 5.8 (optimization over deck types or decision variable d^). As Stage 1 is the most downstream stage and a decision inversion has been performed, no optimization over span length is necessary. 62 For span number 2, the values of state variable are calculated by using equations (3.2) through (3.5) again, as shown below. 2(50) = 100 (1) = 100, = Max. 180 - (3-2)(80) = 100 (M) X2 = Min. 2(80) = 160 = 130, 180 - (3-2)(50) = 130 M- -13-Q - 100 +1 10 = 4 (1) X2 = 100, (2) X2 = 100 + (2-1)(10) = 110, (3) X2 = 100 + (3-1)(10) = 120, (4) X2 = 130. For every value of state variable X^, the decision sets D2 and are determined by using equations (3.7) through (3.14). For X ^ ^ = 100, the following results; 50 (1) D2 = Max. = 50, 100 - (2-1)(80) = 20 80 »») D2 = Min. = 50. 100 - (2-1)(50) = 50 Obviously there is only one value for D2 corresponding to X^(1 ) = 100. For this value of X2> the set of values for decision as follows; is calculated 63 50 (1) = 80, = Max. 180 - 100 - (3-2-1)(80) = 80 i80 (K ) D3 = Min. 180 - 100 - (3-2-1)(50) = 80 _ 100. corresponding to X^(1) = Here again there is only one value for Considering (2 ) = 110, one obtains, (1 ) (1) »2 k3 = 60, = 50’ K2 = 2, °3 (Ka) = 70’ D, = 70, = 1. (3) For X2 = 120, the following is obtained; (2 ) (1) d2 =50, D2 (1) (3) = 60, = 70, K2 = 3, D3 = 60, (K3) 60, *3-1. (U) And, finally, for X2 (1 ) D, = 50, >2 (1) D3 = 50, = 130, one obtains, (2 ) D2 =60, (K ) D, = 50, (3) D, =70, k3 (4) D2 = 80, K2 = 4, = 1. The optimized returns of stage (2,2), bent 2 in span 2, are given in Table 5.10. The results of branch absorption, optimization over deck types (decision variable d2) and optimization over span length (decision variable D2 ) are presented in Tables 5.11 through 5.13. Proceeding to span 3, state variable X3 has a specified value equal to the length of the bridge. The values for the decision set D3 are given as; = 50, D^2) = 60, D^3) = 70, D f = 80. Table 5.14 is the summary table for the optimized returns of stage (3.2). Results of branch absorption are presented in Table 5.15. As stage 3 is the last stage of the model, instead of optimization over decision variables d^ and D^» Table 5.15 is ranked in order of ascend ing cost and the results are given in Table 5.16. The first entry in the cost column of Table 5.16 represents the optimum bridge cost and all other cost entries correspond to the near optimum bridges. The optimum bridge configuration can now be determined by tracing through the optimized summary tables. the best decisions from Table D* = 60, d* = 2, X2 For To demonstrate the procedure; 5.16 are: X3 = X3-D3 = 120, d * 2 = 16/4/38.0/0.0. = 120, the corresponding values of best decisions from Table 5.13 are; D* = 60, d* = 2, X 1 = X2 = X2-D2= 60, d* 2 = 16/6/35.0/4.7. with X^ = 60, the following is obtained from Table 5.9: D* = 60, d* = 2, X^ = Finally from Table 5.6 for = 0, d* 2 = 16/6/35.0/4.7. = 60, the best bent type for bent 1 in span 1 is obtained as, d* 1 = 16/4/38.0/0.0. A summary of the preceding information on the optimum bridge is presented in Table 5.17. In addition, the total optimum bridge cost and the calculated individual component costs are also given. Table 5.1 General Data For Bridge Decks Concrete Slab Data f'c = 3000 psi unit cost of concrete fs unit cost of reinforcingsteel = 0.16 $/lb. = 20,000 psi Min. Main Reinforcing Steel Size Unit weight of curb and = = #5 Bars hand rail = 90 $/cu. yd. Max. Main Reinforcing Steel Size = #6 Bars 303lb./L.F. Prestressed Concrete Girder Data AREA OF GIRDER (in2) WIDTH OF TOP FLANGE (in) WIDTH OF BOTTOM FLANGE (in) DEPTH OF GIRDER (in) MOMENT OF INERTIA (in4) SEC. MOD. FOR BOTTOM FIBERS (in3) I 276 12 16 28 22,750 1807.0 288 14.00 II 369 12 18 36 50,980 3220.5 384 18.00 III 560 16 22 45 125,390 6186.0 583 23.00 IV 789 20 26 54 260,730 10543.1 822 29.00 AASHO GIRDER TYPE WEIGHT OF GIRDER (lb/LF) UNIT COST OF GIRDER ($/LF) CT> Ln 75.00 75.00 0 0 'Si 75.00 o o % Steel In Pile Cap m m m m m m CM CM CM CM CM CM Pile Cap Thic. (Ft.) O CM o• o• O CM CM • CM 2.25 2.25 Pile Cap Width (Ft.) 2.33 m• 3.16 m o• CM o o o o oo O O o o o o O O CM i—l cn l-l M t m o m 00 o M l- M l Allow. Unsupp orted Pile Length (Ft.)* 00 r“4 o cn CM m Pile Unit Weight (lb/LF..) o r-» VO CM 00 cn nt-4 on CM oo i-i CM M t M l- VO Pile Length (Ft.) M l O on oo o 00 vo Pile Perimeter (In.) vo m Pile Area (In.) vo OV i— i Pile Diameter (In.) M li —i CM 00 m n- CM OV O CM in r4 r4 O on cn cn o 1-4 M lVO CM r>» o 00 VO OV m CM i—i o CM CM VO 1-1 00 o rH CM diameter VO M l- m CM m on L/d m M l- o *Based VO 400 r-4 of pile/pile CM Recommended Max. Pile Load (Tons) 1-4 u~i M l height l—1 1^. Freestanding Is-. • cn • = Pile Unit Cost ($/LF.) 324 to tu i-i i-i P4 a) ■u a) M o a o o 'd a) CO to a) M 4J CO a) 14 CM 00 'SL CM • in i —0)i £> tfl H X! •U •H s CO 4J a <u pq a) i—i •r4 P-( »4 O h to 4J CO a i-i tO M a) a a) o Unit Cost of Cone, in Pile Cap ($/cu.yd.) 2.16 66 cn CM cn Table 5.3 Soil and Ground Profile Data for 3 Span Bridge Ground Profile Data Station 24 25 25 25 26 26 26 27 + + + + + + + + 50.00 0.00 50.00 80.00 0.00 50.00 80.00 0.00 Elevation 50.0 44.5 4o.o 40.0 41.8 46.3 49.0 49.0 Assume the following soil data are typical for the site Boring station = 25 + 50.00 Boring Elevation = 20.6 Factor of safety on soil = 3 Soil Data Tip Bearing Coefficient Type of Soil Thickness (Ft.) QU 2 (Tons/Ft ) 5 0.25 0 Clay 10 0.50 2.5 Clay 30 1.0 4.0 Clay 20 0.5 20.0 Sand 68 Table 5.4 Specified Optimization Parameters for 3 Span Bridge Total Bridge Length = 180 feet. Number of spans = 3, Miminum span length = 50 feet, Maximum span length = 80 feet, Incremental span length = 10 feet, Minimum slab thickness = 6.5 inches, Maximum slab thickness = 8 inches, Incremental slab thickness = 0.5 inches, Minimum number of girders = 4, Maximum number of girders = 7, Types of girders = AASHO Type II, III, and IV, Minimum number of piles in bent =2, Maximum number of piles in bent = 8, Types of piles = 16, 18, and 24 inch diameter prestressed concrete piles. Table 5.5 Deck Table Span Length Deck Type No. of Girders Types of Girders Slab Thickness Deck Reaction Deck Cost 50 50 60 60 70 70 80 1 2 1 2 1 2 1 4 4 5 5 4 4 5 2 2 2 2 3 3 3 7.0 7.5 6.5 7.0 7.0 7.5 6.5 142.74 147.41 175.59 181.18 226.63 233.15 276.98 8249.05 7920.56 10153.38 10062.82 12700.71 12337.93 15322.46 Table 5.6 Summary Table for Optimized Returns of Stage (1,1) X1 D1 dl S 0,2,l s l,l,l S l,l,2 50 50 60 60 70 70 80 50 50 60 60 70 70 80 1 2 1 2 1 2 1 0 0 0 0 0 0 0 142.74 147.41 175.59 181.18 226.63 233.15 276.98 117.1 171.1 121.6 121.6 124.8 124.8 127.2 S 0,2,2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 d* 1,1 16/3/42.0/0.0 16/3/42.5/0.0 16/4/37.5/0.0 16/5/38.0/0.0 16/4/42.0/0.0 16/4/42.5/0.0 16/5/39.5/0.0 f l,l 1847.62 1862.62 2067.62 2087.62 2247.62 2267.62 2522.62 Table 5.7 Summary Table for Optimized Returns of Stage (1,2) 50 50 50 50 50 50 50 50 50 50 50 50 50 50 60 60 60 60 60 60 60 60 60 60 60 60 70 ^1 _1 1 1 50 50 50 50 50 50 50 50 50 50 50 50 50 50 60 60 60 60 60 60 60 60 60 60 60 60 70 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 h _2 d sM , i S2.1.2 S1.2.2 S2.1.2 1*1 50 50 50 50 60 60 60 60 70 70 70 70 80 80 50 50 50 50 60 60 60 60 70 70 70 70 50 1 1 2 2 1 1 2 2 1 1 2 2 1 1 1 1 2 2 1 1 2 2 1 1 2 2 1 142.74 147.41 142.74 147.41 142.74 147.41 142.74 147.41 142.74 147.41 142.74 147.41 142.74 147.41 175.59 181.18 175.59 181.18 175.59 181.18 175.59 181.18 175.59 181.18 175.59 181.18 226.63 142.74 142.74 147.41 147.41 175.59 175.59 181.18 181.18 226.63 226.63 233.15 233.15 276.98 276.98 142.74 142.74 147.41 147.41 175.59 175.59 181.18 181.18 226.63 226.63 233.15 233.15 142.74 121.6 121.6 121.6 16/5/36.0/3.8 16/5/36.5/3.8 16/5/36.5/3.8 16/5/36.5/3.8 16/5/38.0/3.8 16/5/38.5/3.8 16/5/38.5/3.8 16/5/39.0/3.8 16/6/36.5/3.8 16/6/36.5/3.8 16/6/36.5/3.8 16/6/37.0/3.8 16/6/39.0/3.8 16/6/39.5/3.8 16/5/37.5/4.7 16/5/38.0/4.7 16/5/38.0/4.7 16/5/38.0/4.7 16/6/34.5/4.7 16/6/35.0/4.7 16/6/35.0/4.7 16/6/35.0/4.7 16/6/37.5/4.7 16/6/38.0/4.7 16/6/38.0/4.7 16/6/38.0/4.7 16/6/35.0/5.6 121.6 124.6 124.6 124.6 124.6 128.8 128.8 128.8 128.8 135.2 135.2 124.6 124.6 124.6 124.6 128.8 128.8 128.8 128.8 135.2 135.2 135.2 135.2 128.8 1*1 ' 2535.12 2560.12 2560.12 2560.12 2635.12 2660.12 2660.12 2685.12 2942.62 2942.62 2942.62 2972.62 3092.62 3122.62 2655.12 2680.12 2680.12 2680.12 2876.62 2906.62 2906.62 2906.62 3056.62 3086.62 3086.62 3086.62 2960.62 o Table 5.7 (Continued) Summary Table for Optimized Returns of Stage (1,2) h ^1 d _l 70 70 70 70 70 70 70 80 80 70 70 70 70 70 70 70 80 80 2 1 2 1 2 1 2 1 1 V D1 0 0 0 0 0 0 0 0 0 h 50 50 50 60 60 60 60 50 50 1 2 2 1 1 2 2 1 2 Sl,2,l S2.1,2 S1.2.2~S2,1,2 233.15 226.63 233.15 226.63 233.15 226.63 233.15 276.98 276.98 142.74 147.41 147.14 175.59 175.59 181.18 181.18 142.74 147.41 128.8 128.8 128.8 135.2 135.2 135.2 135.2 135.2 135.2 h d 16/6/35.0/5.6 16/6/35.0/5.6 16/6/35.5/5.6 16/6/37.0/5.6 16/6/37.0/5.6 16/6/37.0/5.6 16/6/37.5/5.6 16/6/38.0/6.0 16/6/38.0/6.0 fl,2 2960.62 2960.62 2990.62 3080.62 3080.62 3080.62 3110.62 3167.62 3167.62 Table 5.8 Branch Absorption Summary Table for Span x, 1 Dn 1 d.1 50 50 50 50 50 50 50 50 50 50 50 50 50 50 60 60 60 60 60 60 60 60 60 60 60 60 70 70 70 50 50 50 50 50 50 50 50 50 50 50 50 50 50 60 60 60 60 60 60 60 60 60 60 60 60 70 70 70 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 X, -I 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 n _2 d„ _2 50 50 50 50 60 60 60 60 70 70 70 70 80 80 50 50 50 50 60 60 60 60 70 70 70 70 50 50 50 1 1 2 2 1 1 2 2 1 1 2 2 1 1 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 d?1,2 o 16/5/36.0/3.8 16/5/36.5/3.8 16/5/36.5/3.8 16/5/36.5/3.8 16/5/38.0/3.8 16/5/38.5/3.8 16/5/38.5/3.8 16/5/39.0/3.8 16/5/36.5/3.8 16/6/36.5/3.8 16/6/36.5/3.8 16/6/37.0/3.8 16/6/39.0/3.8 16/6/39.5/3.8 16/5/37.5/4.7 16/5/38.0/4.7 16/5/38.0/4.7 16/5/38.0/4.7 16/6/34.5/4.7 16/6/35.0/4.7 16/6/35.0/4.7 16/6/35.0/4.7 16/6/37.5/4.7 16/6/38.0/4.7 16/6/38.0/4.7 16/6/38.0/4.7 16/6/35.0/5.6 16/6/35.0/5.6 16/6/35.0/5.6 12631.79 12343.30 12656.79 12343.30 12731.79 12443.30 12756.79 12468.30 13039.29 12725.80 13039.29 12755.80 13189.29 12905.80 14876.13 14830.57 14901.13 14830.57 15097.63 15057.07 15127.63 15057.07 15277.63 15237.07 15307.63 15237.07 17908.95 17566.18 17908.95 Table 5.8 (Continued) Branch Absorption Summary Table for Span 1 X, _1 D _! d, _1 X -D, 1 1 D _2 d„ _2 70 70 70 70 70 80 80 70 70 70 70 70 80 80 2 1 2 1 2 1 1 0 0 0 0 0 0 0 50 60 60 60 60 50 50 2 1 1 2 2 1 2 d, . Ij2 16/6/35.5/5.6 16/6/37.0/5.6 16/6/37.0/5.6 16/6/37.0/5.6 16/6/37.5/5.6 16/6/38.0/6.0 16/6/38.0/6.0 f, ,+ r. + f, _ 1.1 1 1.2 17596.18 18028.95 17686.18 18028.95 17716.18 21012.70 21012.70 -s--------«----«--- "4 Table 5.9 Summary Table for Optimized Returns of Stage 1 X 11 D, _i _i X, -D, 1 1 D„ _2 d„ _2 50 50 50 50 50 50 50 60 60 60 60 60 60 70 70 70 70 80 80 50 50 50 50 50 50 50 60 60 60 60 60 60 70 70 70 70 80 80 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 50 50 60 60 70 70 80 50 50 60 60 70 70 50 50 60 60 50 50 1 2 1 2 1 2 1 1 2 1 2 1 2 1 2 1 2 1 2 d* , 16/5/36.5/3.8 16/5/36.5/3.8 16/5/38.5/3.8 16/5/39.0/3.8 16/6/36.5/3.8 16/6/37.0.3.8 16/6/39.5/3.8 16/5/38.0/4.7 16/5/38.0/4.7 16/6/35.0/4.7 16/6/35.0/4.7 16/6/38.0/4.7 16/6/38.0/4.7 16/6/35.0/5.6 16/6/35.5/5.6 16/6/37.0/5.6 16/6/37.5/5.6 16/6/38.0/6.0 16/6/38.0.6.0 f, 1 12343.30 12343.30 12443.30 12468.30 12725.80 12755.80 12905.80 14830.57 14830.57 15057.07 15057.07 15237.07 15237.07 17566.18 17596.18 17686.18 17716.18 21012.70 21012.70 Table 5.10 Summary Table for Optimized Returns of Stage (2,2) ^2 A 100 100 110 110 110 110 110 110 110 110 120 120 120 120 120 120 120 120 120 120 120 120 130 130 130 130 130 130 130 50 50 50 50 50 50 60 60 60 60 50 50 50 50 60 60 60 60 70 70 70 70 50 50 50 50 60 60 60 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 V D2 50 50 60 60 60 60 50 50 50 50 70 70 70 70 60 60 60 60 50 50 50 50 80 80 80 80 70 70 70 A * °a fa S2,2,l S3,l,l S2,2,2 S3,1,2 2,2 80 80 70 70 70 70 70 70 70 70 60 60 60 60 60 60 60 60 60 60 60 60 50 50 50 50 50 50 50 1 1 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 142.74 147.41 142.74 147.41 142.74 147.41 175.59 181.18 175.59 181.18 142.74 147.41 142.74 147.41 175.49 181.18 175.59 181.18 226.63 233.15 226.63 233.15 142.74 147.41 142.74 147.41 175.59 181.18 175.59 276.98 276.98 226.63 226.63 233.15 233.15 226.63 226.63 233.15 233.15 175.59 175.59 181.18 181.18 175.49 175.59 181.18 181.18 175.59 175.59 181.18 181.18 142.74 142.74 147.41 147.41 142.74 142.74 147.41 135.2 135.2 128.8 128.8 128.8 128.8 135.2 135.2 135.2 135.2 124.6 124.6 124.6 124.6 128.8 128.8 128.8 1 8.8 135.2 135.2 135.2 135.2 121.6 121.6 121.6 121.6 124.6 124.6 124.6 16/6/38.0/6.0 16/6/38.0/6.0 16/6/35.0/5.6 16/6/35.0/5.6 16/6/35.0/5.6 16/6/35.5/5.6 16/6/37.0/5.6 16/6/37.0/5.6 16/6/37.0/5.6 16/6/37.5/5.6 16/5/37.5/4.7 16/5/38.0/4.7 16/5/38.0/4.7 16/5/38.0/4.7 16/6/34.5/4.7 16/6/35.0/4.7 16/6/35.0/4.7 16/6/35.0/4.7 16/6/37.5/4.7 16/6/38.0/4.7 16/6/38.0/4.7 16/6/38.0/4.7 16/5/36.0/3.8 16/5/36.5/3.8 16/5/36.5/3.8 16/5/36.5/3.8 16/5/38.0/3.8 16/5/38.5/3.8 16/5/38.5/3.8 f2,2 3167.62 3167.62 2960.62 2960.62 2960.62 2990.62 3080.62 3080.62 3080.62 3110.62 2655.12 2680.12 2680.12 2680.12 2876.62 2906.62 2906.62 2906.62 3056.62 3086.62 3086.62 3086.62 2535.12 2560.12 2560.12 2560.12 2635.12 2660.12 2660.12 Table 5.10 (Continued) Summary Table for Optimized Returns of Stage (2,2) X _2 D _2 d _2 130 130 130 130 130 130 130 60 70 70 70 70 80 80 2 1 2 1 2 1 1 X -D 2 2 70 60 60 60 60 50 50 D„ _3 d _3 s_ „ , 2.2,1 s„ , , 3,1,1 50 50 50 50 50 50 50 2 1 1 2 2 1 2 181.18 226.63 233.15 226.63 233.15 276.98 276.98 147.41 142.74 142.74 147.41 147.41 142.74 147.41 S_ - 2,2,2 *"s _ _ _ 3.1.2 124.6 128.8 128.8 128.8 128.8 135.2 135.2 d* 2,2 16/5/39.0/3.8 16/6/36.5/3.8 16/6/36.5/3.8 16/6/36.5/3.8 16/6/37.0/3.8 16/6/39.0/3.8 16/6/39.5/3.8 f 2,2 2685.12 2942.62 2942.62 2942.62 2972.62 3092.62 3122.62 •v l cr> Table 5.11 Branch Absorption Summary Table for Span 2 h d _2 50 50 50 50 50 50 60 60 60 60 50 50 50 50 60 60 60 60 70 70 70 70 50 50 50 50 60 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 X -D„ 2 2 50 50 60 60 60 60 50 50 50 50 70 70 70 70 60 60 60 60 50 50 50 50 80 80 80 80 70 D„ _3 d _3 80 80 70 70 70 70 70 70 70 70 60 60 60 60 60 60 60 60 60 60 60 60 50 50 50 50 50 1 1 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 d~ o 2,2 16/6/38.0/6.0 16/6/38.0/6.0 16/6/35.0/5.6 16/6/35.0/5.6 16/6/35.0/5.6 16/6/25.5/5.6 16/6/37.0/5.6 16/6/37.0/5.6 16/6/37.0/5.6 16/6/37.5/5.6 16/5/37.5/4.7 16/5/38.0/4.7 16/5/38.0/4.7 16/5/38.0/4.7 16/6/34.5/4.7 16/6/35.0/4.7 16/6/35.0/4.7 16/6/25.0/4.7 16/6/37.5/4.7 16/6/38.0/4.7 16/6/38.0/4.7 16/6/28.0/4.7 16/5/36.0/3.8 16/5/36.5/3.8 16/5/36.5/3.8 16/5/36.5/3.8 16/5/38.0/3.8 f,+ r + f 1 2 2 23759.97 23431.48 26040.23 25711.75 26040.23 25741.75 25677.30 25611.75 25677.30 25641.75 28470.34 28196.86 28495.34 28196.86 28087.07 28026.51 28117.07 28026.51 28483.13 28180.36 28513.13 28180.36 31796.87 31493.38 31821.87 31493.38 30737.68 Table 5.11 (Continued) Branch Absorption Summary Table for Span 2 x __2 D„ _2 _2 130 130 130 130 130 130 130 130 130 60 60 60 70 70 70 70 80 80 2 1 2 1 2 1 2 1 1 X -D„ 2 2 70 70 70 60 60 60 60 50 50 D„ _3 d_ _3 2,2 50 50 50 50 50 50 50 50 50 1 2 2 1 1 2 2 1 2 16/5/38.5/3.8 16/5/38.5/3.8 16/5/39.0/3.8 16/6/36.5/3.8 16/6/36.5/3.8 16/6/36.5/3.8 16/6/37.0/3.8 16/6/39.0/3.8 16/6/39.5/3.8 f,+ r + f. 1 2 2 30439.12 30499.68 30464.12 30880.40 30517.62 30880.40 30547.62 31320.88 31350.88 Table 5.12 Summary Table for Optimized Returns of Stage 2 h ^2 S V D2 Ha Ha 100 110 110 110 110 120 120 120 120 120 120 130 50 50 50 60 60 50 50 60 60 70 70 50 50 60 60 70 70 80 80 2 50 60 60 50 50 70 70 60 60 50 50 80 80 70 70 60 60 50 50 80 70 70 70 70 60 60 60 60 60 60 50 50 50 50 50 50 50 50 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 130 130 130 130 130 130 130 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 JLO. 16/6/38.0/6.0 16/6/35.0/5.6 16/6/35.5/5.6 16/6/37.0/5.6 16/6/37.5/5.6 16/5/38.0/4.7 16/5/38.0/4.7 16/6/35.0/4.7 16/6/35.0/4.7 16/6/38.0/4.7 16/6/38.0/4.7 16/5/36.5/3.8 16/5/36.5/3.8 16/5/38.5/3.8 16/5/39.0/3.8 16/6/36.5/3.8 16/6/37.0/3.8 16/6/39.0/3.8 16/6/39.5/3.8 f2,2 23431.48 25711.75 25741.74 25611.75 25641.75 28196.86 28196.86 28026.51 28026.51 28180.36 28180.36 31493.38 31493.38 30439.12 30464.12 30517.62 30547.62 31320.88 31350.88 Table 5.13 Summary Table of Optimized Returns for Span 2 After Optimization Over Span Length x„ 2 D* d* 2 100 110 110 120 120 130 130 50 60 60 60 60 60 60 2 2 2 2 2 2 2 X.-D* 2 2 50 50 50 60 60 70 70 D_ 3 80 70 70 60 60 50 50 3 1 1 2 1 2 1 2 d* 2,2 16/6/38.0/6.0 16/6/37.0/5.6 16/6/37.5/5.6 16/6/35.0/4.7 16/6/35.0/4.7 16/5/38.5/3.8 16/5/39.0/3.8 2 23431.48 25611.75 25641.75 28026.51 28026.51 30439.12 30464.12 Table 5.14 Summary Table for Optimized Returns of Stage (3,2) * x 3 D _3 d Z3 X -D 3 3 180 180 180 180 180 180 180 50 50 60 60 70 70 80 1 2 1 2 1 2 1 130 130 120 120 110 110 100 s 3,2,1 s. 4,1,1 142.74 147.41 175.59 181.18 226.63 233.15 276.98 0.0 0.0 0.0 0.0 0.0 0.0 0.0 s„ „ „ 3,2,2 117.1 117.1 121.6 121.6 124.8 124.8 127.2 S, , „ 4,1,2 0.0 010 0.0 0.0 0.0 0.0 0.0 d„ „ 3,2 16/3/42.0/0.0 16/3/42.5/0.0 16/4/37.5/0.0 16/4/38.0/0.0 16/4/42.0/0.0 16/4/42.5/0.0 16/5/39.5/0.0 „ f 3.2 1847.62 1862.62 2067.62 2087.62 2247.62 2267.62 2522.62 oo Table 5.15 Branch Absorption Summary Table for Span 3 h. _3 d„ _3 X -D„ 3 3 180 180 180 180 180 180 180 50 50 60 60 70 70 80 1 2 1 2 1 2 1 130 130 120 120 110 110 100 d* 3,2 16/4/38.0/0.0 16/3/42.5/0.0 16/4/37.5/0.0 16/4/38.a/0.0 16/4/42.0/0.0 16/4/42.5/0.0 16/5/39.5/0.0 F„+ r.+ f„ 2 3 3 40535.79 40247.30 40247.52 40176.96 40560.08 40247.30 41276.56 Table 5.16 Ranked Summary Table for the Entire Bridge h 180 180 180 180 180 180 180 V i 60 50 70 60 50 70 80 2 2 2 1 1 1 1 D3 120 130 110 120 130 110 100 A* 3,2 16/4/38.0/0.0 16/3/42.5/0.0 16/4/42.5/0.0 16/4/37.5/0.0 16/3/42.0/0.0 16/4/42.0/0.0 16/5/39.5/0.0 h 40176.96 40247.30 40247.30 40247.52 40535.79 40560.08 41276.56 Table 5.17 Optimum 3 Span Bridge Configuration Deck Type No. of Girders SPAN NO. 1 60 2 5 AASH02 7.0 $10062.82 SPAN NO. 2 60 2 5 AASH02 7.0 10062.82 SPAN NO. 3 60 2 5 AASH02 7.0 10062.82 No. of Piles Penetrated Pile Length Pile Diameter Types of Girders Cost of Deck Span Length Slab Thickness Height of Bent Above Ground Cost of Bent Bent No. 1 16 4 38.0 0.0 $ 2087.62 Bent No. 2 16 6 35.0 4.7 2906.63 Bent No. 3 16 6 35.0 4.7 2906.63 Bent No. 4 16 4 38.0 0.0 2087.62 Optimum Bridge Cost = $40176.96 84 5.2 Six Span Bridge Consider Figure 5.2 depicting the general layout of a six span bridge. Information on the bridge and terrain geometry is given in the figure. Tables 5.1 and 5.2 give data for the sub-structure and super-structure components. Four soil borings were obtained and the soil data are summarized in Table 5.18. The bridge is to accommodate two lanes of traffic with deck cross-section as given in Figure 5.1. Table 5.19 gives the range of variation for the parameters considered which affect the bridge economy. In addition to the optimum bridge configuration, all near optimum bridges having total cost within five percent of the optimum bridge are also requested for this problem. Final computer output results for the optimum and near optimum bridges are presented in the following pages. The Central Processing Unit (CPU) time of execution was 3 minutes and 12 seconds in an IBM 360/65. 300'-0 COMPACTED COMPACTED FILL SPAN NO. 2 SPAN NO. 1 SPAN NO. 4 SPAN NO.3 FIN. GRADE EL. 52.04 SPAN NO. 6 SPAN NO. 5 WATER EL. 36.70 EXCAVATE EXCAVATE M e ® TOP BERM EL. 46.80 TOP BERM EL 46.80 150'-0‘ [CHANNEL BOTTOM CO 332 +25 CO +46 +62 +75 CM 333 oo CO +25 +50 +75 +97 334 FIGURE 5.2 GENERAL LAYOUT FOR THE SIX SPAN BRIDGE +30 +63.5 FILL Table 5.18 Soil Data for Six Span Bridge 3.0 1.0 4.0 2.0 4.0 Clay Clay Clay Clay Clay Type of Soil 0.75 0.25 0.95 0.65 1.00 CM . ■U pH O' co C o H x_/ Tip Bearing Coefficient 19.0 12.0 8.0 3.0 85.0 Thickness (Ft.) Type of Soil Boring Sta. = 332 + 8 0 . 0 Elev. Top of Boring = 30.0 Factor of Safety = 2.5 Tip Bearing Coefficient Boring Sta. = 332 + 10.0 Elev. Top of Boring = 45.0 Factor of Safety = 2.5 QU 2 (Tons/Ft. ) Boring No. 2 Thickness (Ft.) Boring No. 1 15.0 4.0 21.0 65.0 0.05 0.50 0.90 1.00 0.0 2.0 4.0 4.6 Clay Clay Clay Clay 1.0 3.5 4.0 Clay "Clay Clay ^ g !=> o'a o wH Type of Soil 0.25 0.80 1.00 t=> o ' 4J Pn Tip Bearing Coefficient 15.0 23.0 60.0 o H /— N CNJ « Thickness (Ft.) Boring Sta. = 334 + 3 5 . 0 Elev. Top of Boring = 43.0 Factor of Safety = 2.5 Type of Soil Boring Sta. = 333 + 75.0 Elev. Top of Boring = 27.0 Factor of Safety = 2.5 Tip Bearing Coefficient Boring No. 4 Thickness (Ft.) Boring No. 3 19.0 13.0 65.0 0.25 0.60 1.00 1.0 2.0 4.0 Clay Clay Clay CM . 4-1 87 Table 5.19 Specified Optimization Parameters for the Six Span Bridge Total Bridge Length = 300 feet, Number of Spans = 6, Minimum Span Length = 40 feet, Maximum Span Length = 100 Feet, Incremental Span Length = 5 feet, Minimum Slab Thickness = 6.5 inches, Maximum Slab Thickness = 8.0 inches, Incremental Slab Thickness = 0.5 inches, Minimum Number of Girders = 4, Maximum Number of Girders = 7 , Type of Girders = AASH0 Type II, III and IV, Minimum Number of Piles in Bent = 2, Maximum Number of Piles in Bent = 8, Types of Piles = 16, 18and 24 inch diameter prestressed concrete piles. * FINAL OUTPUT * OPTIMUM BRIDGE STRUCTURE * * NUMBER 1 FOR 6 SPAN BRIDGE ft******************•*•*«*#*•• I I I I I 1 I I SPAN 1 I SPAN 2 t SPAN 3 t SPAN 4 I SPAN 5 I SPAN 6 I I 1 I 1 I I I I I 1 I I I I BENT 1 BENT 3 . BENT S BENT 6 BENT 7 BENT 2 BENT 4 LENGTH OF SPAN NUMBER OF GIRDERS TYPE OF GIRDERS THICKNESS OF SLAB TOTAL COST OF OECK SPAN NO. 1 DECK NO. 1 50.0 FT. 4 AASHO 2 7.50 IN. * 7920.56 SPAN NO. 2 OECK NO. 2 45.0 FT. 4 AASHO 2 7.50 IN. 8 7128.50 SPAN NO. 3 DECK NO. 3 50.0 FT. 4 AASHO 2 7.50 IN. 8 7920.56 SPAN NO. 4 OECK NO. 4 45.0 FT. 4 AASHO 2 7.50 IN. 8 7128.50 SPAN NO. S OECK NO. 5 50.0 FT. 4 AASHO 2 7.50 IN. 8 7920.56 SPAN NO. 6 OECK NO. 6 60.0 FT. 5 AASHO 2 7.00 IN. 8 10062.82 STATION OF BENT PILE OIAMETER BENT NO. 1 331470.00 IB.00 IN. s 21.0 FT. 0.0 FT. BENT NO. 2 332*20.00 18.00 IN. 4 36.5 FT. BENT NO. 3 332465.00 18.00 IN. 4 BENT NO. 4 333415.00 18.00 IN. BENT NO. S 333460.00 BENT NO. 6 BENT NO. 7 NUMBER OF PILES IN BENT PENETRATED LENGTH HEIGHT OF BENT TOTAL COST OF BENT 8 ' 2070.83 12.5 FT. S 3184.52 38.5 FT. 20.9 FT. 8 3687.95 4 36.5 FT. 22.8 FT. 8 3678.95 18.00 IN. 4 39.5 FT. 20.9 FT. 8 3735.95 334410.00 18.00 IN. 5 31.0 FT. 16.3 FT. 8 3650.96 334470.00 18.00 IN. 4 43.5 FT. 0.0 FT. 8 2922.83 SPAN NO. t SPAN NO. 2 SPAN NO. 3 SPAN NO. 4 SPAN NO. 5 SPAN NO. 6 TOTAL COST OF THE BRIDGE 71013*44 NEAR OPTIMUM 6 SPAN BRIDGE NUMBER 1 TOTAL BRIDGE COST IS MITHIN 5*0 PERCENT OF OPTIMUM SPAN NUMBER OF GIRDERS TYPE OF GIRDERS THICKNESS OF SLAB length ‘ of TOTAL COST OF OECK SPAN NO. 1 OECK NO. 1 50.0 FT. 4 AASHO 2 7.50 IN. S 7920.56 SPAN NO. 2 OECK NO. 2 43.0 FT. 4 AASHO 2 7.50 IN. S 7128.50 SPAN NO. 3 OECK NO. 3 30.0 FT. 4 AASHO 2 7.50 IN. S 7920.56 SPAN NO. 4 OECK NO. 4 43.0 FT. 4 AASHO 2 7.50 IN. S 7128.50 SPAN NO. s DECK NO. 5 ■ 30.0 FT. 4 AASHO 2 7.50 IN. S 7920.56 SPAN NO. 6 DECK NO. 6 60.0 FT. 5 AASHO 2 6.50 IN. S 10153.38 NUMBER OF PILES IN BENT PENETRATED LENGTH TOTAL COST OF BENT STATION OF BENT PILE DIAMETER BENT NO. I 331.70.00 18.00 IN. 5 21.0 FT . 0.0 FT. S 2070.83 BENT NO. 2 332.20.00 18.00 IN. 4 36.S FT • 12.5 FT. * 3184.52 BENT NO. 3 332*65.00 18.00 IN. 4 38.5 FT • 20.9 FT. S 3687.95 BENT NO. 4 333.13*00 18.00 IN. 4 36.5 FT ■ 22.8 FT. S 3678.95 BENT NO. 5 333*60.00 18.00 IN. 4 39.5 FT • 20.9 FT. S 3735.95 BENT NO. 6 334*10.00 18.00 IN. 5 30.5 FT . 16.3 FT. S 3620.96 BENT NO. 7 334.70.00 18.00 IN. 4 43.5 FT . 0.0 FT. S 2922.83 • HEIGHT OF BENT SPAN NO. 1 SPAN NO. 2 SPAN NO. 3 SPAN NO. 4 SPAN NO. 5 SPAN NO. 6 TOTAL COST OF THE BRIOGE - 71074.00 NEAR OPTIMUM 6 SPAN 8RIOGE NUMBER 2 TOTAL BRIOGE COST IS WITHIN 5.0 PERCENT OF OPTIMUM LENGTH OF SPAN NUMBER OF GIRDERS TYPE OF GIRDERS THICKNESS OF SLAB OTAL COST OF DECK span NO* I OECK NO. 1 60.0 FT. 5 AASHO 2 7.00 IN. S 10062.62 span NO. 2 OECK NO. 2 50.0 FT. 4 AASHO 2 7.50. IN. 6 7920.56 SPAN NO. 3 OECK NO. 3 45.0 FT. 4 AASHO 2 7.50 IN. * 7126.50 SPAN NO. 4 OECK NO. 4 45.0 FT. 4 AASHO 2 7.50 IN. * 7128.50 SPAN NO. S OECK NO. S 50.0 FT. 4 AASHO 2 7.50 IN. 6 7920.56 SPAN NO. 6 OECK NO. 6 50.0 FT. 4 AASHO 2 7.50 IN. S 7920.56 STATION OF BENT • PILE DIAMETER NUMBER OF PILES IN BENT PENETRATED LENGTH HEIGHT OF BENT TOTAL COST OF BENT BENT NO. 1 331+70.00 24.00 IN. S 16.5 FT. 0.0 FT. S 2223.67 8ENT NO. 2 332+30.00 t e . o o IN. S 33.5 FT. 15.7 FT. S 3763.62 BENT NO. 3 332+00.00 i b .o o IN. 4 38.5 FT. 20.9 FT. S 3687.95 BENT NO. 4 333+25.00 16.00 IN. 4 36.5 FT. 22.0 FT. * 3644.15 BENT NO. 5 333+70.00 16.00 IN. 4 39.5 FT. 20.9 FT. • 3735.95 BENT NO. 6 334+20.00 16.00 IN. 4 36.5 FT. 13.0 FT. 6 3213.07 BENT NO. 7 334+70.00 18.00 IN. 4 41.5 FT. 0.0 FT. 5 2826.63 SPAN NO. I SPAN NO. 2 SPAN NO. 3 SPAN NO. 4 SPAN NO. S SPAN NO. 6 TOTAL COST OF THE BRIOGE - 71176.88 NEAR OPTIMUM 6 SPAN BRIOGE NUMBER 3 TOTAL BRIOGE COST IS WITHIN 5.0 PERCENT OF OPTIMUM LENGTH OF SPAN NUMBER OF GIRDERS TYPE OF GIRDERS THICKNESS OF SLA8 TOTAL COST OF OECK 50.0 FT. 4 AASHO 2 7.50 IN. S 7920.56 2 OECK NO. 2 50.0 FT. 4 AASHO 2 7.50 IN. S 7920.56 3 OECK • u. 4 AASHO 2 7.50 IN. S 7128.50 4 OECK NO. 4 50.0 FT. 4 AASHO 2 7.50 IN. S 7920.56 S OECK NO. 5 60.0 FT. 5 AASHO 2 7.00 IN. * 10062.62 6 OECK NO. 6 45.0 FT. 4 AASHO 2 7.50 IN. * 7128.50 • • z 3 o OECK NO. 1 o 1 NUM8ER OF PILES IN BENT PENETRATED LENGTH HEIGHT OF BENT TOTAL COST OF BENT STATION OF BENT PILE OIAMETER BENT NO. 1 331470.00 18.00 IN. 5 21.0 FT. 0.0 FT. * 2070.83 BENT NO. 2 332420.00 10.00 IN. 4 37.5 FT. 12.5 FT. S 3232.52 BENT NO. 3 332470.00 10.00 IN. 4 30.5 FT. 20.9 FT. S 3687.95 BENT NO. 4 33341S.00 10.00 IN. 4 36.5 FT. 22.S FT. S 3676*95 BENT NO. 5 333465.00 10.00 IN. 5 36.5 FT. 20.9 FT. S 4257.23 BENT NO. 6 334425.00 10.00 IN. 5 34.0 FT. 11.4 FT. S 3534.96 BENT NO. 7 334470.00 10.00 IN. 4 41.0 FT. 0.0 FT. % 2802.83 * 71346.75 1 2 3 4 5 6 TOTAL COST OF THE BRIDGE - **«****»****«•****»•»»******•*•*«»**»* NEAR OPTIMUM 6 SPAN BRIDGE NUMBER 4 TOTAL BRIDGE COST IS VITHIN 9*0 PERCENT OF OPTIMUM LENGTH OP SPAN NUMBER OF GIRDERS TYPE OF GIRDERS THICKNESS OF SLAB TOTAL COST OF OECK SPAN NO* 1 OECK NO* 1 50.0 FT. 4 AASHO 2 7.50 IN. 8 7920.56 SPAN NO* 2 OECK NO* 2 SO.O FT. 4 AASHO 2 7.50 IN. % 7920.56 SPAN NO* 3 DECK NO. 3 SO.O FT* 4 AASHO 2 7.50 IN. S 7920.56 SPAN NO* A OECK NO* 4 45.0 FT. 4 AASHO 2 7.50 IN. * 7128.50 SPAN NO* 5 OECK NO* S SO.O FT* 4 AASHO 2 7.50 IN. * 7920.56 SPAN NO. 6 OECK NO. 6 55.0 FT. S AASHO 2 7.00 IN. S 9224.25 STATION OF BENT • PILE OIAMETER NUMBER OF PILES IN BENT PENETRATEO LENGTH HEIGHT OF BENT TOTAL COST OF BENT - BENT NO. 1 331470*00 18.00 IN. 5 21.0 FT. 0.0 FT. • 2070.83 BENT NO. 2 332420.00 18.00 IN. 4 37.5 FT. 12.5 FT. S 3232*.52 BENT NO. 3 332470.00 18.00 IN. 5 34.S FT. 20.9 FT. * 4137.23 BENT NO. 4 333420.00 18.00 IN. 4 37.0 FT. 22.4 FT. S 3685.55 BENT NO* 5 333465.00 18.00 IN. 4 39.5 FT. 20.9 FT. S 3735.95 BENT NO. 6 334415.00 18.00 IN. S 31.5 FT. 14.7 FT. * 3582.30 BENT NO* 7 334470.00 18.00 IN. 4 43.0 FT. 0.0 FT. S 2898.83 SPAN NO* > SPAN NO* 2 SPAN NO* 3 SPAN NO. 4 SPAN NO. 5 SPAN NO* 6 TOTAL COST OF THE BRIOGE 71376*19 NEAR OPTIMUM 6 SPAN 8R10GE NUMBER 5 TOTAL BRIOGE COST IS WITHIN S.O PERCENT OF OPTIMUM LENGTH OF SPAN NUMBER OF GIRDERS TYPE OF GIRDERS THICKNESS OF SLAB TOTAL COST OF DECK SPAN NO. 1 OECK NO. 1 SO.O FT. 4 AASHO 2 7.50 IN. S 7920.S6 SPAN NO. 2 OECK NO. 2 SO.O FT. 4 AASHO 2 7.50 IN. S 7920.56 SPAN NO. 3 OECK NO. 3 SO.O FT. 4 AASHO 2 7.50 IN. S 7920.56 SPAN NO. A OECK NO. 4 45.0 FT. 4 AASHO 2 7.50 IN. S 7128.50 SPAN NO. 3 OECK NO. 5 SO.O FT. 4 AASHO 2 7.50 IN. S 7920.56 SPAN NO. 6 OECK NO. 6 SS.O FT. S AASHO 2 6.50 IN. * 9307.27 NUMBER OF PILES IN BENT PENETRATEO LENGTH HEIGHT OF BENT TOTAL COST OF BENT STATION OF BENT PILE OtAMETER BENT NO. 1 331470.00 18.00 IN. S 21.0 FT. 0.0 FT. S 2070.83 BENT NO. 2 332420.00 18.00 IN. 4 37.5 FT. 12.5 FT. S 3232.S2 BENT NO. 3 332470.00 18.00 IN. 5 34.5 FT. 20.9 FT. S 4137.23 BENT NO. 4 333420.00 18.00 IN. 4 37.0 FT. 22.4 FT. S 3685.55 BENT NO. S 333465.00 18.00 IN. 4 39.S FT. 20.9 FT. S 3735.95 BENT NO. 6 334415.00 18.00 IN. 5 31.0 FT. ' 14.7 FT. S 3552.30 BENT NO. 7 334470.00 18.00 IN. 4 42.5 FT. 0.0 FT. S 2874.83 • SPAN NO. 1 SPAN NO. 2 span NO. 3 SPAN NO. 4 SPAN NO. S SPAN NO. 6 TOTAL COST OF THE BRIOGE - 71407.19 •**********•••*•*••*•*••**.«.**«•**»*. NEAR OPTIMUM 6 SPAN BRIOGE NUMBER 6 TOTAL BRIOGE COST IS WITHIN 5.0 PERCENT OF OPTIMUM LENGTH OF SPAN NUMBER OF GIRDERS TYPE OF GIRDERS THICKNESS OF SLAB TOTAL COST OF DECK OECK NO* I 30*0 FT. 5 AASHO 2 7.00 IN. S 10062.82 2 OECK NO* 2 50*0 FT. 4 AASHO 2 7.50. IN. S 7920.56 3 OECK 3 45.0 FT* 4 AASHO 2 7.50 IN. S 7128.50 4 OECK NO* 4 45.0 FT. 4 AASHO 2 7.50 IN. S 7128.50 9 OECK NO* 5 50.0 FT. 4 AASHO 2 7.50 IN. * 7920.56 6 OECK 50.0 FT* 4 AASHO 2 7.00 IN. S 8249.05 2 O • z o • 1 6 STATION OF BENT PILE DIAMETER NUMBER OF PILES IN BENT PENETRATED LENGTH HEIGHT OF BENT TOTAL COST OF BENT 331*70.00 24.00 IN. 5 16.5 FT. 0 .0 FT. * 2223.67 BENT NO* 2 332*30.00 18.00 IN. 5 33.5 FT. 15 .7 FT. * 3763.82 BENT NO* 3 332*80.00 18.00 IN. 4 38.5 FT. 20 .9 FT. S 3687.95 4 333*25.00 18.00 IN. 4 36.5 FT. 22 .0 FT. S 3644.15 BENT NO* 5 333*70.00 18.00 IN. 4 39.5 FT. 20 .9 FT. S 3735.95 BENT NO* 6 334*20*00 18.00 IN. 4 36.0 FT. 13.0 FT. S 3189.07 BENT NO* 7 334*70.00 18.00 IN. 4 41.5 FT. 0.0 FT. S 2826.83 S 71481.38 Z o • 1 SENT > 2 3 • o z BENT 4 5 6 TOTAL COST OF THE BRIOGE - VO *****•*»*»**»»»*»•*»»»»*»*»»*»»***•«** NEAR OPTIMUM 6 SPAN BRIOGE NUMBER 7 TOTAL. BRIOGE COST IS WITHIN S.O PERCENT OF OPTIMUM LENGTH OF SPAN NUMBER OF GIRDERS TYPE OF GIRDERS THICKNESS OF SLAB I OECK NO* I 30*0 FT. 4 AASHO 2 7.50 IN. z OECK NO* 2 30*0 FT. 4 AASHO 2 7.SO IN. 3 OECK NO* 3 43.0 FT. 4 AASHO 2 7.50 IN. 4 OECK NO* 4 SO.O FT. 4 AASHO 2 7.50 IN. 5 OECK NO* S 60.0 FT. 5 AASHO 2 7.00 IN. 6 OECK NO* 6 43.0 FT. 4 AASHO 2 7.00 IN. NUMBER OF PILES IN BENT PENETRATEO LENGTH HEIGHT OF BENT STATION OF BENT PILE DIAMETER BENT NO* 1 331+70*00 IB.00 IN. 3 21.0 FT. 0 .0 FT. BENT NO* 2 332420.00 18*00 tN. 4 37.5 FT. 12.5 FT. BENT NO* 3 332470.00 18.00 IN. 4 38.5 FT. 20 •9 FT. BENT NO* 4 333415.00 IB.00 IN* 4 36.5 FT. 22 .8 FT. BENT NO* 3 333465*00 16.00 IN. 3 36.5 FT. 20 •9 FT. BENT NO* 6 334425.00 18.00 IN. 3 34.0 FT. It .4 FT. BENT NO* 7 334470.00 18.00 IN. 4 40.5 FT. 0• 0 FT. I £ 3 4 5 6 TOTAL COST OF THE BRIOGE - NEAR OPTIMUM 6 SPAN BRIOGE NUMBER 8 TOTAU BRIDGE COST IS WITHIN 5.0 PERCENT OF OPTIMUM SPAN NUMBER OF GIRDERS TYPE OF GIROERS THICKNESS OF SLAB length of TOTAL COST OF OECK SPAN NO. 1 DECK NO. I SO.O FT. 4 AASHO 2 7.50 IN. * 7920.56 SPAN NO. 2 OECK NO. 2 SO.O FT. 4 AASHO 2 7.50 IN. 8 7920.56 SPAN NO. 3 DECK NO. 3 SO.O FT. 4 AASHO 2 7.50 IN. 8 7920.56 SPAN NO. A OECK NO. 4 60.0 FT. S AASHO 2 7.00 IN. 8 10062.82 SPAN NO. 5 OECK NO. 5 SO.O FT. 4 AASHO 2 7.SO IN. 8 7920.56 SPAN NO. 6 DECK NO. 6 40.0 FT. 4 AASHO 2 7.50 IN. 8 6336.45 • STATION OF 8ENT PILE DIAMETER NUMBER OF PILES IN BENT PENETRATED LENGTH HEIGHT OF BENT TOTAL COST OF BENT BENT NO. I 331470.00 18.00 IN. 5 21.0 FT. 0.0 FT. 8 2070.83 BENT NO. 2 332420.00 18.00 IN. 4 37.5 FT. 12.5 FT. 8 3232.52 BENT NO. 3 332470.00 18.00 IN. S 34.5 FT. 20.0 FT. 8 4137.23 BENT NO. 4 333420.00 18.00 IN. 5 34. 5 FT. 22.4 FT. 8 4224.23 BENT NO. 5 333480.00 18.00 IN. 5 36.5 FT. 20.9 FT. 8 4257.23 BENT NO. 6 334430.00 18.00 IN. 4 37.5 FT. 9.8 FT. 8 3103.20 BENT NO. 7 334470.00 18.00 IN. 4 40.0 FT. 0.0 FT. 8 2754.83 SPAN NO. 1 SPAN NO. 2 SPAN NO. 3 SPAN NO. 4 SPAN NO. 5 SPAN NO. 6 TOTAL COST OF THE BRIDGE - 71861.56 * NEAR OPTIMUM * • • 6 SPAN BRIOGE NUMBER 9 TOTAL BRIOGE COST IS WITHIN 5*0 PERCENT OF OPTIMUM LENGTH OF SPAN NUMBER OF GIRDERS TYPE OF GIRDERS THICKNESS OF SLAB TOTAL COST OF OECK SPAN NO* t OECK NO* 1 SO.O FT. 4 AASHO 2 7.50 IN. S 7920.56 SPAN NO* 2 OECK NO* 2 50*0 FT. 4 AASHO 2 7.30 IN. 9 7920.56 SPAN NO. 3 OECK NO. 3 SO.O FT. 4 AASHO 2 7.SO IN. S 7920.56 SPAN NO* 4 OECK NO* 4 60*0 FT. S AASHO 2 7.00 IN. S 10062.02 SPAN NO* S OECK NO* S SO.O FT. 4 AASHO 2 7.S0 IN. S 7920.56 SPAN NO* 6 OECK NO. 6 40.0 FT. -4 AASHO 2 7.00 IN. • 6599.23 STATION OF BENT • PILE DIAMETER NUMBER OF PILES IN BENT PENETRATED LENGTH HEIGHT OF BENT TOTAL COST OF BENT BENT NO. 1 3 3 1 + 7 0 .0 0 ta .o o IN. 5 2 1 .0 FT. 0 .0 FT. • 2 0 7 0 .6 3 BENT NO. 2 3 3 2 + 2 0 .0 0 IB. 00 IN. 4 3 7 .5 FT. 1 2 .5 FT. * 3 2 3 2 .5 2 BENT NO. 3 3 3 2 + 7 0 .0 0 ta .o o IN. S 34.S FT. 2 0 .9 FT. S 4 1 3 7 .2 3 BENT NO. 4 3 3 3 + 2 0 .0 0 ta .o o IN. 5 34.S FT. 2 2 .4 FT. s 4 2 2 4 .2 3 BENT NO. S 3 3 3 + 8 0 .0 0 1 8 .0 0 IN. 5 3 6 .5 FT. 2 0 .9 FT. s 4 2 5 7 .2 3 BENT NO. 6 3 3 4 + 3 0 .0 0 ta .o o IN. 4 3 7 .5 FT. 9 .8 FT. 9 3 1 0 3 .2 0 BENT NO. 7 3 3 4 + 7 0 .0 0 ta .o o IN. 4 3 9 .5 FT. 0 .0 FT. 9 2 7 3 0 .8 3 S 72100*31 SPAN NO. 1 SPAN NO. 2 SPAN NO. 3 SPAN NO. 4 SPAN NO. S SPAN NO. 6 TOTAL COST OF THE BRIOGE - VC 98 5.3 Five Span Constrained Bridge The bridge structure considered here is the one presented in Section 5.2 with the exception that it has 5 spans and is constrained as follows: Spans 1 and 5 are specified to have a 40 Ft . length; that is the location of bent number 2 for spans 1 and 4 is specified. In addition, to minimize the channel obstruction, the center line of span number 3, the center span, is specified to be 150 feet from either end of the bridge, with a minimum span length of 60 feet. the other spans, the specified minimum length is 40 feet. For Figure 5.3 presents the general layout of the bridge with the imposed constraints. Other necessary data are given in Tables 5.1, 5.2, 5.18 and 5.19. computer output is presented in the following pages. execution was 19 seconds in an IBM 360/65. The The CPU time of 300'-0 150' 40' 40' COMPACTED COMPACTED SPAN NO. 1 SPAN NO. 3 SPAN NO. 2 FILL SPAN NO. 5 SPAN NO. 4 FILL FIN. GRADE EL. 52.04 WATER EL. 36.70 EXCAVATE F. L. EL. 24.6 TOP BERM EL. 46.80 TOP BERM EL. 46.80 150'-0' (CHANNEL BOTTOM) *o CO 332 +25 CO +46 +62 +75 CM 333 oo CO CM +25 CO +50 CO co +75 +97 334 FIGURE 5.3 GENERAL LAYOUT OF THE FIVE SPAN BRIDGE OO +30 +63.5 VO VO • FINAL OUTPUT * * OPTIMUM BRIOGE STRUCTURE * NUMBER I FOR S SPAN BRIOGE ****»»*••***♦*•**»»*»*****«*» 1 I I I I I I I I SPAN 2 I SPAN 3 t SPAN 4 I SPAN S I I I 1 I I I I I I I BENT 6 BENT S BENT 4 BENT 3 BENT 2 SPAN I t BENT I LENGTH OF SPAN NUMBER OF GIRDERS TYPE OF GIRDERS THICKNESS OF SLAB OTAL COST OF OECK SPAN NO* 1 OECK NO* t 40*0 FT. 4 AASHO 2 7.50 IN. 6336.45 SPAN NO* 2 OECK NO. 2 70.0 FT. 4 AASHO 3 7.50 IN. 12337.93 SPAN NO* 3 DECK NO* 3 80.0 FT. S AASHO 3 6.50 IN. 15322.46 SPAN NO* 4 OECK NO* 4 70.0 FT. 4 AASHO 3 7.50 IN. 12337.93 SPAN NO* 5- OECK NO* S 40.0 FT. 4 AASHO 2 7.50 IN. 6336.45 NUMBER OF PILES IN BENT PENETRATED LENGTH HEIGHT OF BENT OTAL COST OF BENT STATION OF BENT PILE DIAMETER BENT NO. I 331470*00 18.00 IN. S 17.5 FT. 0.0 FT. 1860.83 BENT NO. 2 332*10.00 18.00 IN. S 36.0 FT. 9.2 FT. 3522.05 BENT NO* 3 332*80.00 24.00 IN. 4 43.5 FT. 20.9 FT. 4712.30 BENT NO* 4 333*60.00 24.00 IN. 4 44.5 FT. 20.9 FT. 4768.30 BENT NO* S 334*30.00 18.00 IN. S 37.0 FT. 9.8 FT. 3616.30 BENT NO* 6 334*70.00 18.00 IN. 4 40.0 FT. 0.0 FT. 2754.83 SPAN NO* I span NO* 2 SPAN NO. 3 SPAN NO. 4 SPAN NO. 5 TOTAL COST OF THE BRIOGE - 7390S.S1 6. SUMMARY AND CONCLUSIONS This investigation has dealt with a study of the minimum cost design of simple span deck and girder highway bridges. The optimization method employed was Dynamic Programming. As a first step in the investigation, the Dynamic Programming model of a general highway bridge structure was developed. All bridge com ponent characteristics were preserved in the corresponding stages of the model. Return functions representing component costs were derived for every stage. The interrlationships between stages were defined by transition functions and incidence identities. The model's structure turned out to be a branched, boundary value allocation Dynamic Programming system. The mathematical equations to evaluate upper and lower bounds and all intermediate values of the state and decision variables representing length, were subsequently derived for every stage of the model. The solution of the problem was obtained through model decomposi tion to generate optimal policies by minimizing stage returns over the following two decisions variables: 1. A decision variable representing component types with sufficient structural integrity to withstand the superimposed loads. 2. A decision variable representing allocatable lengths to each span of the bridge structure. Detailed procedures for model decomposition, branch absorption, stage and branch optimization and construction of Dynamic Programming 101 102 Summary tables were described. The solution method developed was structured as a computational algorithm which was described in step by step and macroflow chart forms. To demonstrate the application of the algorithm and the procedure de veloped, a three span bridge was given as an example problem. Every step of the algorithm was carried out in detail and a bridge structure of a minimum cost was generated. An extensive computer program was developed for fast and efficient implementation of the algorithm. The program is extremely flexible in that it permits a complete economic investigation of bridge structures with a variety of externally imposed constraints. The two most impor tant capabilities of the program were demonstrated in the example prob lems of sections 5.2 and 5.3. In conclusion, this investigation has shown that a systematic pro cedure for minimum cost design of highway bridges is possible with Dy namic Programming. The procedure permits efficient and comprehensive economic studies of bridge structures based on alternative cost evalu ations of both super-structure and sub-structure components simul taneously considering bridge geometry and soil and terrain conditions. The method and the resulting computer program can be used: 1. To study the economics of bridge configurations to meet finan cial, esthetic, and other requirements. 2. To study the economics of newly developed structural components and to compare them with those presently in use. 3. To study thecost trade off between bridge openings across waterways and the damages to upstream property or the 103 acquisition of innundation rights resulting from backwater conditions which can develop from the contraction imposed on the natural channel by the bridge embankments. 4. To study bridge geometry when constrained by physical obstruc tions . 7. RECOMMENDATIONS It is recommended that the study of bridge optimization be continued with special emphasis placed on the following: 1. Revision of the procedure developed to include an efficient search technique for the selection of the optimum number of — spans for an unconstrained bridge. As an example, Fibonacci Search can be used if it were ascertained that the relationship of bridge cost to number of spans is given by a unimodal function. 2. Modification of the general theory to accept msss production cost factors. That is, as the quantity of structural elements of the same type and size increases, a reduction factor could be applied to the unit cost. This would result in a more accurate computation of total bridge cost. 3. Development of techniques to include long span structures such as trusses, in the total bridge optimization procedure. 4. Dynamic Programming Optimization of continuous span bridge structures. The computer program should be expanded to include design modules for specialized bridge components such as, composite steel girderconcrete slab bridge decks. A full man-machine interactive system can be the result of incorporating the program in a system such as ICES or TIES. Many other problems related to bridge structural optimization, such as suspended and orthotropic deck bridges, merit a considerable amount of detailed study. 104 8. 1. References "Standard Specification for Highway Bridges," AASHO (American Association of State Highway Officials). 1970. 2. "Specification for the Design, Fabrication and Erection of Structural Steel for Building," Manual of Steel Construction, 6th ed., American Institute of Steel Construction, New York, N.Y. 1967. 3. Bellman, R.E. Dynamic Programming, Princeton University Press, Princeton, New Jersey. 1957. 4. Dreyfus, S.E. Dynamic Programming and Calculus of Variations, Academic Press, New York, N.Y. 1965. 5. Bellman, R.E., and S.E. Dreyfus. Applied Dynamic Programming, Princeton University Press, Princeton, New Jersey. 1962. 6. Aris, R. Discrete Dynamic Programming, Blaisdell Publishing Co., New York, N.Y. 1964. 7. Nemhouser, G.L. Introduction to Dynamic Programming, John Wiley and Sons, Inc., New York, N.Y. 1967. 8. Wilde, D.J., and C.S. Beightler. Foundations of Optimization, Prentice-Hall, Inc., Englewood Cliff, New Jersey. 1967. 9. Aguilar, R.J. "An Application of Dynamic Programming to Structural Optimization," Bulletin No. 91, Division of Engineering Research, Louisiana State University, Baton Rouge, La. 1967. 105 106 10. Cornell, C.A., P.K. Ho, and R.A. Ehrlich. "A Method for the Optimum Design of Simple Span Deck and Girder Highway Bridges,11 Report R67-22, Department of Civil Engineering, M.I.T. June, 1967. 11. Latona, R.W. “Optimization of Span Arrangement for Highway Bridges," Report R68-54, Department of Civil Engineering, M.I.T. May, 1968. 12. Sturman, G.M., L.C. Albertson, Jr., C.A. Cornell, and J.M. Roesset. "Computer-Aided Bridge Design," Journal of the Structural Division, ASCE, vol. 92, No. ST6. December, 1966. 13. Razani, R. "Computer Analysis of Highway Bridge Girder," Journal of the Structural Division, ASCE, vol. 93, No. ST1. February, 1967. 14. Holt, E.C., and G.L. Heithecker. "Minimum Weight Proportions for Steel Girder," Journal of the Structural Division, ASCE, vol. 95, No. ST10. October, 1969. 15. Razani, R . , and G.G. Goble. Plate Girders," Journal ASCE, vol. 92, No. 16. "Optimum Design of Constant-Depth of the StructuralDivision, ST2. April, 1966. Goble, G.G., and P.V. DeSantis. "Optimum Design of Mixed Steel Composite Girders," Journal of the Structural Division, ASCE, vol. 92, No. 17. Jacques, F.J. "Study of ST6. December, 1966. Long Span Prestressed Concrete Bridge Girders," Journal of the Prestressed Concrete Institute, vol. 16, No. 2. March-April, 1971. 107 18. Ayer, F.A., and C.A. Cornell. ’'Grid Moment Maximization by Mathe matical Programming," Journal of the Structural Division, ASCE, vol. 94, No. ST2. February, 1968. 19. Bigelow, R.H., and E.H. Gaylord. "Design of Steel Frames for Minimum Weight," Journal of the Structural Division, ASCE, vol. 93, No. ST6. December, 1967. 20. Hill, Jr., L.A. "Automated Optimum Cost Building Design," Journal of the Structural Division, ASCE, vol. 92, No. ST6. December, 1966. 21. Reinschmidt, R.F., C.A. Cornell, and J.F. Brotchie. "Iterative Design and Structural Optimization," Journal of the Structural Division, ASCE, vol. 92, No. ST6. December, 1966. 22. Brown, D.M., and A.H.,-S. Ang. "Structural Optimization by Non linear Programming," Journal of the Structural Division, ASCE, vol. 92, No. ST6. December, 1966. 23. Moses, F. "Optimum Structural Design Using Linear Programming," Journal of the Structural Division, ASCE, vol. 90, No. ST6, Part 1. December, 1964. 24. Romstad, K.M., and C.K. Wang. "Optimum Design of Framed Structures," Journal of the Structural Division, ASCE, vol. 94, No. ST12. December, 1968. 25. Dobbs, M.W., and L.P. Felton. "Optimization of Truss Geometry," Journal of the Structural Division, ASCE, vol. 95, No. ST10. October, 1969. 108 26. Johnson, D., and D.M. Brotton. "Optimum Elastic Design of Redun dant Trusses," Journal of the Structural Division, ASCE, vol. 95, No. ST12. December, 1969. 27. Barnett, R.L. *T)esign of Statically Determinate Trusses for Minimum Weight and Deflection," IXT Research Institute Project No. M6152, IIT Research Institute Technology Center, Chicago, Illinois. May, 1967. 28. Louisiana Department of Highways, Bridge Design Section, 'detail Standards," Baton Rouge, Louisiana, Unpublished Manual of Design. 29. Porter, James, C. "A Program for the Design and/or Analysis of Prestressed Girders," Bridge Design Section, Louisiana Department of Highways, Baton Rouge, Louisiana, January 1970. 9 9.1 APPENDICES Computer Program To implement the algorithm of section 4 an extensive computer pro gram was developed. in form. The program is written in Fortran IV and is modular It consists of a main program and several subroutines, each of which performs a particular task. The program is designed to permit full man-machine interaction not only through the input of data but also through structural design module interchangeability, which allows the user to incorporate his own procedures as subroutines. The program is capable of accepting constraints on the bridge geo metry by specifying locations of bents, or span center lines, or both to account for special conditions such as bridge crossings over existing roadways and other physical obstructions. In addition to the lowest cost bridge configuration, the program can also generate all other bridge structures that fall within any specified percentage of the minimum cost (1% or 5% for example). The range and the increment are specified by the user. The average Central Processing Unit (CPU) time required for a typi cal bridge is in the order of one minute figuration. per span on an IBM 360/65 con As the number of spans increases, the CPU time per span also increases. The program operates in an environment of approximately 200k of core when the search is specified at 5 foot intervals. The core requirements decrease to approximately 150k when search interval is increased to 10 feet. In the following sections the general logic of the main program 109 110 and all subroutines directly related to the algorithm are discussed. The other subroutines in the program are either input-output or design routines. 9.1.1 Main Program 9.1.1.1 Purpose. The basic function of the main program is to call on individual subroutines to perform specific tasks at appropriate times. It also provides a data pool for the exchange of information between the subroutines. 9.1.1.2 Discussion of General Logic. are specified by the main program. table B (array TABB). Basically two work areas They are table A (array TABA) and Table B represents a Dynamic Programming table constructed for each stage of the model. It includes six columns, each of which contains values of state or decision variables. A separate cost column designated as array BCST is associated with table B. Re sults of branch absorption, optimization over deck type and optimiza tion over span length are sequentially recorded in this table. Sub sequently, the pertinant data, needed when branch absorption for the next upstream stage is performed, is transferred to table A. Then the content of table B, which corresponds to a Dynamic Programming summary table of all downstream stages, is written on the disk for further reference. The information on the disk is used for selecting compo nents of the optimum or near optimum bridge. Table B is then reused for construction of a Dynamic Programming table for the next upstream stage. Ill Tabic A includes three columns; each column contains different values of state or decision variables. The cost column associated with this table is designated as array ACST. Figure 9.1 represents the general logic flow chart for the Main Program. Definitions of all the variables used in the Main Program are given in Table 9.1. 112 START subroutine (IDENT) IDENTIFY THE BRIDGE CALCULATE BEGINNING AND END OF BRIDGE STATIONS. ESTABLISH WHETHER THE BRIDGE IS CONSTRAINED OR FREE. ADJUST MIN. SPAN LENGTH IF NECESSARY subroutine (DKDSN) DESIGN DECK FOR EVERY SPAN LENGTH IN THE SPECIFIED RANGE OF MINIMUM TO MAXIMUM SPAN LENGTH. subroutine (DKOPT) SELECT SUBOPTIMUM DECKS FOR EVERY SPAN LENGTH. SET UP DKTB. SET UP EXTREME END SPANS PROPERTIES. CONSIDER SPAN NO. 1. subroutine (SLC) DETERMINE ALL BENT NO. 2 LOCATIONS AND SPAN LENGTHS FOR SPAN NO.I DETERMINE ALL SPAN LENGTHS FOR THE ADJACENT UPSTREAM SPANS r subroutine (BTDSN) DESIGN AND OPTIMIZE BENT NO. 1 IN SPAN NO.1 FOR EVERY SPAN LENGTH AND DECK TYPE. Figure 9.1 Macroflow Chart for the Main Program CONSTRUCT TABLES A AND B FOR BENT NO. 1 IN SPAN NO. 1 subroutine (WTDSK) | WRITE TABLE B ON DISK subroutine (BTDSN) DESIGN AND OPTIMIZE BENT NO. 2 IN THE SPAN UNDER CONSIDERATION FOR EVERY BENT LOCATION, LENGTH OF SPAN UNDER CONSIDERATION, TYPE OF DECK FOR THE SPAN UNDER CONSIDERATION, LENGTH OF ADJACENT UPSTREAM SPAN* TYPE OF DECK IN THE ADJACENT UPSTREAM SPAN 1' CONSTRUCT TABLE B FOR BENT NO. 2 IN THE SPAN UNDER CONSIDERATION subroutine (TABABS) | ADD CORRESPONDING COSTS FROM TABLES A,B,AND DECK TABLE. CONSTRUCT A NEW TALBE B. (ABSORPTION OF STAGES) IS THIS SPAN NO. 1 YES subroutine (TABOPI) NO SELECT MIN. COSTS AND CORRESPONDING ROWS FROM TABLE B AND WRITE IN TABLE B CONSTRUCT TABLE A. (OPTIMIZATION OVER DECK TYPES) Figure 9.1 (Continued) subroutine (TAB0P1) SELECT MIN. COSTS AND CORRESPONDING ROWS FROM TABLE B. WRITE THE SELECTION IN TABLE B. (OPTIMIZATION OVER DECK TYPE) subroutine (TABOP2) SELECT MIN. COSTS AND THE CORRESPONDING ROWS FROM TABLE B. WRITE THE SELECTION IN TABLE B. CONSTRUCT TABLE A. (OPTIMIZATION OVER SPAN LENGTH) subroutine (WTDSK) WRITE TABLE B ON DISK CONSIDER THE NEXT SPAN subroutine (SLC) DETERMINE ALL BENT NO. 2 LOCATIONS AND SPAN LENGTHS FOR THE SPAN UNDER CONSIDERATION. DETERMINE ALL SPAN LENGTHS FOR THE ADJACENT UPSTREAM SPAN. IS THIS THE LAST SPAN NO subroutine (BTDSN) DESIGN AND OPTIMIZE BENT NO. 2 IN THE LAST SPAN FOR EVERY SPAN LENGTH AND DECK TYPE. CONSTRUCT TABLE B FOR BENT NO.2 OF THE LAST SPAN i Figure 9.1 (Continued) subroutine (TABABS) ADD CORRESPONDING COSTS FROM TABLES A,B,AND DECK TABLES. CONSTRUCT A NEW TABLE B. (ABSORPTION OF STAGES) subroutine (TABOP3) 11 ______________ RANK TABLE B ACCORDING TO TOTAL BRIDGE COST. DETERMINE NUMBER OF NEAR OPTIMUM BRIDGES IF REQUESTED subroutine (WTDSK) WRITE TABLE B ON DISK CALCULATE NO. OF REPETITIONS CORRESPONDING TO NO. OF CALCULATED NEAR OPTIMUM BRIDGES SELECT OPTIMUM OR NEAR OPTIMUM COST FROM TABLE B. SELECT CORRESPONDING INFO. ABOUT THE LAST SPAN. RECORD THE SELECTED INFO. AT THE BOTTOM OF TABLE B. TRACE THROUGH TABLE B AND SELECT SPAN CONFIGURATION CORRESPONDING TO THE OPTIMUM OR NEAR OPTIMUM BRIDGE subroutine (RDDSK) READ TABLE B OFF THE DISK HAVE ALL TABLES ON THE DISK BEEN READ ? REMEMBER SPAN LENGTH, DECK TYPE, AND BENT LOCATION FOR THIS SPAN TO BE USED AS TEST VALUES. Figure 9.1 (Continued) 116 subroutine (OUTPUT) TRANSLATE THE INFO. AT THE BOTTOM OF TABLE B INTO FINAL DOCUMENT FORM. DOCUMENT ^routine (RDDSK) ARE NEAR OPTIMUM BRIDGES REQUESTED ARE OPTIMUM BRIDGES FOR DIFFERENT NO. OF SPANS REQUESTED READ THE LAST TABLE OFF THE DISK SELECT THE NEXT NUMBER OF SPANS. STOP Figure 9.1 (Continued) Table 9.1 Main Program Variable Definition List VARIABLE NAME VARIABLE CHARACTERISTICS DESCRIPTION UNITS ACST Type:Real.Array Global:Common.In/Out Dollars A one dimensional array containing total cost of all considered bridge components BBS Type:Real Global:Common.Out :Argument. Out Stations Beginning Bridge Station BBS1 Type:Real Global:Argument.Out Data:Read in Stations Number of whole stations in Beginning Bridge Stations BBS 2 Type:Real Global:Argument.Out Data:Read in Feet Fraction of whole station in Beginning Bridge Station BCST Type:Real.Array Global:Common.In/Out Dollars A one dimensional array containing total cost of all considered bridge components BNTLCN Type:Integer.% word Feet Bent Location BRH Type:Integer None Beginning Row. Designates beginning row of a section in the deck table BRHADJ Type‘ .Integer None Beginning Row Adjacent. Designates beginning row of a section in the deck table CNST Type:Real None Constant number used for calculating section numbers in the deck table Table 9.1 (Continued) VARIABLE CHARACTERISTICS UNITS CTLB Type:Real Feet Calculated Total Length of the Bridge based on minimum span length for all spans D Type:Real .Array Global:Common.In/Out Feet A two dimensional array containing values of span length corresponding to a particular bent location DADJ Type:Real.Array Global:Common.In/Out :Argument.Out Feet A one dimensional array containing values of span length for the adjacent span DCKTYP Type:Integer:h word None Deck Type DELL Type:Real Global:Common.Out Data:Read in Feet Specified incremental span length DKPR Variable Type:Real .Array Global:Argument.In/Out Deck Properties. A two dimensional array containing information about different types of decks for a given span length DKTB Type: Real.Array Global:Common.In :Argument.Out Variable Deck Table. A two dimensional array of suboptimized deck information. For details see subroutine DKOPT Variable Definition List DPOB Type:Real Global:Argument.In Inches Diameter of Pile in the Optimum Bent EBS Type: Real Global:Argument.Out Station End of Bridge Station VARIABLE NAME DESCRIPTION 118 Table 9.1 (Continued) VARIABLE CHARACTERISTICS UNITS EBS1 Type:Real Stations Number of whole stations in the End of Bridge Station EBS2 Type: Real Feet Fraction of whole stations in the End of Bridge Station ELSL Type: Real Global:Common.Out :Argument.Out Data:Read in. Feet Extreme Left Span Length. Length of approach span resting on the first bent of the bridge ELSR Type:Real Global:Common.Out :Argument.Out Data:Read in Kips Extreme Left span dead load Reaction ERSL Type:Real Global:Common.Out :Argument. Out Data:Read in Feet Extreme Right Span Length. Length of approach span resting on the last bent of the bridge ERSR Type:Real Global:Common.Out :Argument. Out Data:Read in Kips Extreme Right Span dead load Reaction ERW Type:Integer None End Row. Designates the last row of a section in the deck table VARIABLE NAME DESCRIPTION Table 9.1 (Continued) VARIABLE CHARACTERISTICS UNITS EBWADJ Type:Integer None End Row Adjacent. Designates the last row of a section in the deck table FIX Type:Logical Global:Common.Out Data: Alphameric None FIX - TRUE designates a constrained bridge FIX 83 FALSE designates an unconstrained bridge FIXED Type:Alphameric None Designates a constrained bridge FIXTES Type:Alphameric Data:Data Statement None Used to establish if the bridge is constrained GUTT Type: Real Feet Global:Argument.In/Out Gutter distance of bridge decks HTOB Type:Real Global:Argument.In Height of Optimum Bent above ground line IDKTB1 Type:Function Statement None Used to calculate section numbers in the deck table IDKTB2 Type:Integer.Array Global:Common.In None A two dimensional array which describes the structure of the deck table. See subroutine DKOPT Variable Definition List, Table 9.2 INDES Type:Integer Data:Read in None Indicator for Extreme End Spans. INDES = 1 designates approach spans are specified at both ends of the bridge. INDES = 0 means no extreme end spans are specified VARIABLE NAME Feet DESCRIPTION Table 9.1 (Continued) VARIABLE NAME VARIABLE CHARACTERISTICS K Type:Integer.Array Global:Common.In None A one dimensional array representing the number of values for D corresponding to each value of bent location KADJ Type:Integer Global:Common.In None Represents number of Values for DADJ KS Type:Integer None A Counter of different values of D KSADJ Type:Integer None A Counter of different values of DADJ LSTROW Type:Integer Global:Common.In None Number of starting row for optimum ornear optimum bridge data which have been placed atthe bottom of TABB and BCST M Type:Integer Global:Common.In None Counter, designating number of values for bent locations MSGR Type:Integer Global:Common.Out Data.Read in None Message level indicator; MSGR = 0 causes no inter mediate data to be printed. MSGR = 1 causes all intermediate data to be printed. MSGR = 2 causes partial intermediate data to be printed N Type:Integer None Number of the span under condiseration NBLK Type:Integer None Number of the Block of generated data on the disk NCHK Type:Integer Global:Common.In None Check indicator used in allocating total available length to bent location and adjacent upstream span length UNITS DESCRIPTION Table 9.1 (Continued) VARIABLE NAME VARIABLE CHARACTERISTICS UNITS DESCRIPTION NDK Type:Integer None Global:Argument.In/Out Number of rows (Decks) in array DKPR NDT Type:Integer Global:Common.In None Absolute row number in DKTB NFBLK Type:Integer.Array Global:Common.In/Out None Number of First Block of generated data on the disk in a specified section NLBLK Type:Integer.Array Global:Common.In/Out None Number of Last Block of generated data on the disk in a spcified section NLSEC Type:Integer None Number of Last Section of generated data on the disk NNBK Type:Integer Global:Common.In/Out None Number of the Block of input data on the disk NOB Type:Integer Global:Common.In/Out None Number of Optimum Bridges NPOB Type:Integer Global:Argument.In None Number of Piles in the Optimum Bent NREPS Type:Integer None Number of Repetitions. Counter for number of optimum and near optimum bridges generated NROW Type:Integer.Array Global:Common.In/Out None Number of Rows for each section of generated data on the disk Table 9.1 (Continued) VARIABLE NAME VARIABLE CHARACTERISTICS UNITS DESCRIPTION NRTABB Type:Integer Global:Common.Out Data:Data Statement None Total Number of Rows in Table B NS Type:Integer Global:Common.Out None Number of spans in the bridge NSEC Type:Integer Global:Common.In/Out None Number of section of data on the disk NSMAX Type:Integer Data:Read in None Maximum Number of spans in the bridge NSMIN Type:Integer Data:Read in None Minimum Number of spans in the bridge PCINC Type:Real Global:Common.Out Data:Read in None Incremental percentage for near optimum bridges PCMAX Type:Real Global:Common.Out Data:Read in None Maximum percentage for near optimum bridges PERCNT Type:Integer.Array Global:Common.In/Out None An array representing number of near optimum bridges for each percentage range PLPOB Type:Real Global:Argument.In Feet Penetrated Length of pile in the Optimum Bent Table 9.1 (Continued) VARIABLE CHARACTERISTICS UNITS PSL TyperReal Feet RDWY Type: Real Feet Global:Argument.In/Out Roadway width ROWA Type:Integer Global:Common.In/Out None Number of occupied rows in arrays TABA and ACST ROWB Type:Integer Global:Common.In/Out None Number of occupied rows in arrays TABB and BCST SEC Type.Integer None Section number in the deck table, used concurrently with the length of span under consideration SECADJ Type:Integer None Section number in the deck table, used concurrently with the length of adjacent upstream span SL Type:Real Global:Argument.Out Feet Span Length SMNSL Type: Real Global:Common.Out Data:Read in Feet Specified Minimum Span Length for all spans SMXSL Type:Real Globa1:Common.Out Data:Read in Feet Specified Maximum Span Length for all spans SPNLGH Type:Integer.\ word Feet Span Length VARIABLE NAME DESCRIPTION Partial Span Length, used concurrently with NCHK Table 9.1 (Continued) VARIABLE NAME VARIABLE CHARACTERISTICS UNITS DESCRIPTION SYS IN Type:Integer Global:Common.Out Data:Data Statement None Card reader unit number SYSOT Type:Integer Global:Common.Out Data:Data Statement None Line printer unit number TABA Type:Integer.Array.\ Word Variable TABB Type:Integer.Array.% word Variable TALA Type:Real Global:Common.In Feet A two dimensional array representing a condensed Dynamic Programming summary table for a par ticular span. Column 1 represents the adjacent upstream span length in feet. Column 2 represents the adjacent upstream span deck types. Column 3 represents bent locations in feet for the span under consideration A two dimensional array representing a Dynamic Programming table of a particular stage. Column 1 contains the values of the adjacent upstream span length in feet. Column 2, deck types for the adjacent upstream span. Column 3, bent locations, in feet, for the span under considera tion. Column 4, values of span length, in feet, for the span under consideration. Column 5, deck types for the span under consideration. Column 6 contains left over lengths, in feet, to be allo cated to downstream spans Total Available Length for Allocation Table 9.1 (Continued) VARIABLE NAME VARIABLE CHARACTERISTICS UNITS DESCRIPTION TCOB Type:Real Global:Argument.In Dollars Total Cost of the Optimum Bent TLB Type:Real Global:Common.Out Data:Read in Feet Total Length of the Bridge TOTAL Type:Real Feet Sum of the values of bent locations for the span under consideration and adjacent upstream span length UCCB Type:Real Global:Argument.Out Data:Read in $/cu.yd. Unit Cost of Concrete in Bent UCCD Type:Real Global:Argument.Out Data:Read in $/cu.yd. Unit Cost of Concrete in Deck UCS Type:Real Global:Argument.Out Data:Read in $/lb. Unit Cost of Reinforcing Steel WKF1 Type:Integer Global:Common.Out Data:Data Statement None Work File 1. Name of the input data file on the disk WKF2 Type:Integer Global:Common.Out Data:Data Statement None Work File 2. Name of the generated data file on the disk Table 9.1 (Continued) VARIABLE NAME VARIABLE CHARACTERISTICS UNITS DESCRIPTION X Type:Real.Array Global:Common.In Feet A one dimensional array representing values of bent location for each span XCON Type:Real.Array Global:Common.In :Argument.Out Stations A one dimensions1 array representing values of bent location for each span 128 9.1.2 Deck Optimization Routine 9.1.2.1 Purpose. The deck design routine (subroutine DKDSN) de signs and generates necessary data defining the properties of bridge decks of a given length. Information on all decks of common span length are then transferred to the main program in an array called DKPR. Deck optimization routine (subroutine DKOPT) is subsequently supplied with this information and deck suboptimization is performed. Finally, the pertinent information on the selected decks are transferred to the main program in an array called DKTB. 9.1.2.2 Discussion of General Logic. Subroutine DKDSN generates a substantial number of decks for each span length. As the number of decks increases, the number of decisions to be made and the amount of information to be saved and searched in the optimization process grow rapidly. Therefore, it became necessary to devise a method to reduce the number of decks considered for a given span length. The philosophy in reducing the number of decks is based on the following simply con cept: "A deck which is both of greater cost and greater weight than another deck for the same span length can be omitted from consideration without altering the optimization policy.11 To demonstrate this policy consider Figure 9.2 which depicts rela tive positions of decks of common length in a cost versus weight plot. The result of eliminating decks of both greater cost and weight is shown in Figure 9.3. The set of decks among which there exists no deck of both smaller weight and cost constitutes the "minimum weight-cost boundary". Single decks can be arbitrarily chosen as test points and any deck of both greater weight and cost omitted, thus obtaining the minimum weight-cost boundary. However, in devising a systematic method to obtain the minimum weight-cost boundary, it was observed that the test runs of subroutine DKDSN for prestressed concrete girders with concrete slabs often produced decks as represented in Figure 9.4. In this case, the minimum cost deck and the minimum weight deck eliminate all other decks from consideration and are the only two decks on the minimum weight-cost boundary. It was therefore deemed desirable for computational efficiency to determine the minimum weight and the mini mum cost decks first. Then all decks having lesser weight than the minimum cost deck and lesser cost than the minimum weight deck were selected (decks that lie inside the shaded region, such as shown sche matically in Figure 9.5). The properties of the selected decks were placed in an array called DKTB which is referred to as deck table. The minimum weight and the minimum cost decks were also included in the deck table. If only one or no deck lay inside the shaded region of Figure 9.5 no additional work is necessary. However, if more than three decks were added to the deck table further suboptimization becomes necessary as the decks in the shaded region may eliminate each other. For further suboptimization each point is selected as a test point in order (first to last). The minimum cost and minimum weight decks are not used as test points. A test point eliminates from further consideration any deck with greater cost and weight (see Figure 9.6). decks are not considered in any way. Once eliminated, Voids left in DKTB by eliminating decks are filled by immediately moving up in the table the remaining 130 information. In a special case, it is possible for a single deck to be both the minimum cost and the minimum weight deck and as such eliminate all other decks from further consideration. mum deck for the given span length. If so, this deck is the opti 131 minimum weight deck minimum weight deck IO O min. weight-cost boundary o w min. cost deck minimum cost deck Weight Weight FIGURE 9.3 FIGURE 9.2 MINIMUM WEIGHT COST BOUNDARY DECKS OF COMMON SPAN LENGTH minimum weight deck ^ minimum cost deck Weight FIGURE 9.4 DECKS FOR PRESTRESTRESSED CONCRETE GIRDERS AND CONCRETE SLAB , minimum weight deck \ minimum weight deck eliminated by current test point test point o minimum cost deck u ^ m i n . cost deck selected decks Weight FIGURE 9.5 MINIMUM WEIGHT AND MINIMUM COST DECK REGION Weight FIGURE 9.6 TEST POINT REGION ENTER: INPUT - A SPAN LENGTH AND PROPERTIES OF ALL DECKS DESIGNED BY DKDSN WITH THAT SPAN LENGTH DETERMINE MINIMUM COST DECK REGARDLESS OF WEIGHT DETERMINE MINIMUM WEIGHT DECK REGARDLESS OF COST PLACE IN DECK TABLE ONLY THOSE DECKS WITH SMALLER COST THAN THE MINIMUM WEIGHT DECK AND SMALLER WEIGHT THAN THE MINIMUM COST DECK; INCLUDE MINIMUM COST DECK AND MINIMUM WEIGHT DECK HAVE MORE THAN DECKS BEEN ADDED TO DKTB ? NO OF THOSE DECKS ADDED TO DKTB CHOOSE EACH AS A TEST POINT AND ELIMINATE FROM FURTHER CONSIDERATION ALL DECKS WHICH COST AND WEIGH MORE THAN A TEST POINT; READJUST DKTB BY MOVING INFO. UP IN ORDER TO CLOSE VOIDS MADE BY ELIMINATING DECKS FOR FUTURE REFERENCE RECORD THE BEGINNING ROW OF NEW SECTION AND NUMBER OF DECKS PLACED IN DKTB COMPRISING THE SECTION RETURN Figure 9.7 Macroflow Chart for Subroutine DKOPT TABLE 9.2 Subroutine DKOPT Variable Definition List UNITS DISCRIPTION VARIABLE NAME VARIABLE CHARACTERISTICS DKPR Type:Real.Array Global:Argument.In Variable Deck Properties; a two-dimensional array of deck pro perties. DKTB Type:Real .Array Global:Common.Out Variable Deck Table; a two dimensional array of suboptimized deck information; each row in DKTB describes a single deck; Col. 1 gives span length in feet; Col. 2, deck type; Col. 3, no. of girders, Col. 4, type girder, Col. 5, thickness of slab in inches, Col. 6, deck reaction in Kips, and Col. 7, cost in dollars. FIRST Typerlnterger None Number of first row to be added to array DKTB for given call to subr.DKOPT. IDKTB2 Type:Integer.Array None A two dimensional array which describes the structure of the deck table (DKTB); DKTB is ordered in sections of common span length; Col. 1 in IDKTB2 contains the initial row no. of a section in DKTB and Col. 2 contains the no. of rows in that section. JH Type:Integer None Row indicator of minimum cost deck in array DKPR JHS Type:Integer None Temporary row indicator of minimum cost deck in DKPR Table 9.2 (Continued) VARIABLE NAME VARIABLE CHARACTERISTICS UNITS JK Type:Integer None Row indicator of minimum weight deck in array DKPR JKS Type:Integer None Temporary row indicator of minimum weight deck in array DKPR MSGR Type:Integer Global:Common.In None Message level indicator; MSGR=0 causes no intermediate messages to be printed; MSGR=1 causes intermediate messages to be printed. NDK Type:Integer Global.Argument.In None Number of rows (decks) in array DKPR. NDST Type:Integer None Relative row number in a section (decks of common span length comprise a section) in deck table (DKTB). NDT Type:Integer Global:Common.In/Out None Absolute row number in deck table (DKTB). NDT1 Type‘ .Integer None Absolute row number plus one in DKTB. NSL Type:Integer None Sequence number corresponding to span lenght; minimum span length corresponds to NSL=1; the deck table (DKTB) is ordered such that decks of common span length com prise a section, NSL indicates section number. TES6 Type:Real Kips Weight of a deck being used as a test point TES7 Type:Real Dollars Cost of a deck being used as a test point SYSOT Type:Integer Global:Common.In Data:Data Statement None Unit number of line printer; initialized to 6 in BLOCK DATA. DESCRIPTION 135 9.1.3 Span Length Calculator Routine 9.1.3.1 Purpose. The span length calculator routine (subroutine SLC) is designed to calculate bent locations (state variable X), cor responding span lengths (decision variabl D) and span lengths for the adjacent upstream span (decision variable D). SLC generates all neces sary data for every span of both free and constrained bridges. 9.1.3.2 Discussion of General Logic: Free Bridge. A free bridge is defined as one with no restrictions placed upon the lengths of indi vidual spans or the locations of bents with the exception of the speci fied single minimum and single maximum span lengths required for all spans. The program logic to generate the necessary data for each span of a free bridge follows very closely the development presented in Sec tion 3.3. The general logic flow chart for the free bridge is given in Figure 9.17. 9.1.3.3 Table 9.3 gives subroutine SLC variable definition list. Discussion of General Logic; Constrained Bridge. A con strained bridge is defined as one where some of the bents and/or span center lines are specified to fall at prescribed locations. Every span of a constrained bridge can be of one of the following three types: free span; span with location of its right bent specified; span with fixed center line. To develop methods for calculating bent loca tions and span lengths for each of the above types, assume span n is under consideration. Define, _(D X 83 specified center line location for span n 136 _(2) = specified right bent location in span n (1) n specified minimum span length for span n (2 ) specified maximum span length for all spans. A basic assumption made here is that the minimum and the maximum values of bent location for the adjacent downstream span n is being considered, i.e., X (1) n-1 and X (M) ... n-1 are known when span To calculate the values for the bent locations and the adjacent upstream span lengths, know ledge of the type of constraint placed upon the closest upstream span to span n is also necessary. Three possible cases ensue: case A : All upstream spans are unconstrained case B : Upstream span number i has a specified location for its right bent and all other spans bounded by spans n and i are unconstrained case C : Upstream span number i has a specified location for its center line and all other spans in between are free. With these assumptions and definitions, one can now proceed to consider nine basic possibilities. Special cases for each of these possibili ties also exist. The program logic is based on the efficient utilization of the equations developed in the proceeding sections. The program generates all necessary data for any specified number of combinations of the constraints already discussed. Figure 9.17 depicts the general logic 137 of the program in flow chart form. 9.1.3.3.1 Free Span Case A . under consideration, is free. In addition, no constraints on any of the upstream spans are specified. tation of this case. This case occurs when span n, the one Figure 9.8 is a schematic represen The minimum value of bent location G^"^) is given by; (l) x n-1 „ (1) + £n X (1) = Max. n (2) L - (N-n) • ^ The maximum value of bent location (M) x n-1 (M) (X^ ) is given by; (2) + X<M) = Min. n £ N L - (9.1) (1) T j=n+l (9.2) I. J The lower and upper bound values for the span length corresponding to / \ a given bent location, e.g., X n , can now be calculated in the foln lowing manner; (1) n = Max. (m ) X n (M) - X . n-1 (9.3) .( 2 ) D^Kn^ = Min. n (m ) n (1) - X n-1 (9.4) 138 The lower and upper bound values for the span length of the adjacent upstream span are given by the following equations; (1) (1) Dn+1 I ^n+l = MaXm { (M) L - X (2) (9'5) - (N-n-1) • I n (2 ) « i) ' 1 Dn « (1 ) L 9.1.3.3.2 - Xn ■ - (1 ) j = g+2 Free Span Case B . t (1 ) + V l • This case consists of an N span bridge with free span n and with bent location specified for span i (i>n). Figure 9.9 depicts this case. The lower and upper bound bent location values for span n are given by; (1) (1) Xn \ Xn-1 = H*- Xn I = Min* + l n i _(2) Xi - (i-n) • (M) (M) (1) J Xn-1 _(2) X, (2) I (9’7) (2) + ^n i (1) E I. j=n+l 2 The minimum and the maximum values of span length corresponding to specific bent locations are represented by equations (9.3) and (9.4). 139 The lower and upper bound values for the span length of the adjacent upstream span are given by the following equations; *(1) n+1 (1) D n+1 = Max. - X X. 1 (9.9) (2) (M) _(2) (i-n-1) ?(2 ) (X ..) D J r 1 = Min. n+1 _(2 ) CD X, n i ■ ,o j=n+2 (1) (1) j J n+1 (9.10) A special case of this general case develops when i = n+1. the constrained upstream span is adjacent to span n. That is, As a consequence, equations (9.7) through (9.10) reduce to the following: (1) X (1) n = Max. . n-1 (1) + I n (2) _(2 ) (2) (M) (M) n Xn-1 n-1 = Min. .(2) (9.11) + 1 (i) (9.12) X. (1) (1) D n+1 ^n+l Max. _(2 ) X, (M) (9.13) 140 (2) (M) I D , = Min. n+1 9.1.3.3.3 (9.14) _(2) (1) - X X. n 1 Free Span Case C . This case considers the condition when span n is free and center line of span i is specified to fall at a prescribed location (See Figure 9.10). The following relationships generate the necessary data. (1) Xn-1i (1 ) X n (1) = Max. n - (i-n- .5) X. l X (2 ) X n = Min. (9.15) (2) _(D (M) . n-1 (2) + I (1) _(D i S j=n+l X. l (1) I. + J (9.16) The minimum and the maximum values of span length are given by equa tions (9.3) and (9.4). To compute the lower and upper bound values of the adjacent upstream span length use the following equations, (1) ^n+l (1) }n+l = Max. _ (D X, (9.17) (M) - X n - (i-n-1.5) • I (2) 141 (2) (K .,) Dn+1 (1) = l E j=n+2 _(1) (1) X. - X l n (1) (1 ) (9 .1 8 ) n+1 As in the preceding section, a special case of this general case de velops when i = n+1, that is, the constrained upstream span is adjacent to span n. The following equations result; X (1) X n n + I n = Max. X (M) n-1 (9 .1 9 ) (2) ( _(D X. - (M) X (1) (1) n n-1 - I (2) I + (1) = Min. _(D X. (9 .2 0 ) *1 (1) l n+l (1) D n+1 = Max. _(D X, (M) - X (2) (9 .2 1 ) n (2) D (IW n+1 Min. (1) _(1) X. - X (1) (9.22) ________________I x(n»n) N n+1 FIGURE 9 .8 FREE SPAN AND CASE A L x!2) XK ) 1 n n + 1 i N FIGURE 9.9 FREE SPAN AND CASE B L xV> tori v (n v ) A n 1 1 1 I 1 1 n n + 1 FIGURE 9.10 FREE SPAN AND CASE C i N 143 9.1.3.3.4 Fixed Bent Span and Case A . Now consider the case where the location for the right bent of span n is specified and the values of span length for spans n and n+1 are sought. As before, the charac teristics of upstream spans should be investigated. is assumed that all upstream spans are free. case. In this case it Figure 9.11 depicts this As span n has a specified right bent location, (1) (M) _(2) The values of minimum and maximum span length equations (9.3) and (9.4). for span n are given by As a special case if X ^ ^ = n-1 n-I , that is the right bent location of span n-1 was also fixed, then (1) D n (K ) = D n (1) = £ n . (9.24) The lower and upper bound values of the adjacent upstream span length are given by equations 9.1.3.3.5 case. (9.5) and (9.6). Fixed Bent Span and Case B . Equation (9.23) still holds. applicable for the span length. Figure 9.12 depicts this Equations (9.3) and (9.4) are If span n-1 has also a fixed bent position, special case, equation (9.24) applies. The bounds for the length of the adjacent upstream span are given by equations (9.9) and (9.10). If i = n+1, special case, then the only value of this span is 144 given by; (9.25) 9.1.3.3.6 Fixed Bent Span and Case C . of this case is given by Figure 9.13. and (9.4) are applicable. A schematic representation Again, equations (9.23), (9.3) For the special case when span n-1 has a fixed bent position, equation (9.24) applies. The bounds for the ad jacent upstream span lengh are given by equations (9.17) and (9.18). It should be noted that for span i no special case exists, that is, i cannot be equal to n+1. If i = n+1, then it will not be possible to ad here to the specified constraint on span n+1. 9.1.3.3.7 Fixed Center Line Span and Case A. This is the case where span n is specified with a fixed center line location and all the upstream spans are free. Figure 9.14 depicts this case. The lower and upper bound values of bent location are given by, _(D X (1) X n n + 2 = Max. (2) (9.26) L - (N-n) • I _(D X + (M) X n l (2) — ---(9.27) = Min L FIGURE 9.11 FIXED BENT SPAN A N D CASE A L x f 2> y <2) n n+1 i N FIGURE 9.12 FIXED B E N 7.S P A N AN D CASE B y(2) n+1 FIGURE 9.13 FIXED BENT SPAN AND CASE C N 146 The lower and upper bound values of the span length and of the adjacent upstream span length are given by equations (9.3) through (9.6). 9.1.3.3.8 this case. Fixed Center Line Span and Case B . Figure 9.15 depicts The minimum and maximum values of bent location are given by; - (1> n + (1) X n = Max. - r - (i-n) X X n n = Min. I .( 2 ) _(D (M) (9.28) (2) _«> X. 1 + (2) (9.29) l X. x s j-n+1 I (1) j Equations (9.3) and (9.4) generate the values of span length. Equations (9.9) and (9.10) are applicable for the adjacent upstream span. Also, for the special case (i=n+l), equations (9.13) and (9.14) can be used. 9.1.3.3.9 FjLxed-..Qenter.,.liinel.S.pan and Case C. sents this case schematically. cable for the bent locations. values of span length. Figure 9.16 repre Equations (9.28) and (9.29) are appli Equations (9.3) and (9.4) generate the For the adjacent upstream span, lower and upper bound values are given by equations (9.17) and (9.18). FIGURE 9.14 FIXED CENTER LINE SPAN A N D CASE A X (2) y ( l" n ) A n y(l) An n+1 N FIGURE 9.15 FIXED CENTER LINE SPAN A N D CASE B X (nin) n V (l) A n n+1 FIGURE 9.16 FIXED CENTER LINE SPAN AND CASE C N 148 C Key to Abriviations ENTER IS THIS A FREE BRIDGE CL BL SL ASL = = = = Center Line of Span Bent Location Span Length Adjacent upstream Span Length IS THIS THE FIRST SPAN IS THIS THE FIRST SPAN READ DATA FOR CONSTRAINED BRIDGE CHECK FOR SPECIFIED MIN. AND MAX SPAN LENGTHS CALCULATE ADJACENT UPSTREAM SPAN LENGTHS CHECK FOR SPECIFIED MIN. SPAN LENGTH AND SPECIFIED INDIVIDUAL SPAN LENGTHS IS THIS THE LAST SPAN ESTABLISH BOUNDS FOR BENT LOCATION SET UP LOOP TO CALCULATE BENT LOCATIONS FOR THE FIXED BENT LOCATION CALCULATE BOUNDS FOR SPAN LENGTH Figure 9.17 Macroflow Chart For The Subroutine SLC 149 ESTABLISH BOUNDS FOR SPAN LENGTH CALCULATE SPAN LENGTHS / YES Is\ BL OF PREVIOUS SPAN FIXED NO SL EQUALS SPECIFIED MIN SPAN LENGTH CALCULATE BENT LOCATIONS CALCULATE ALL SL'S WITHIN THE BOUNDS CALCULATE TOTAL AVAILABLE LENGTH FOR ALLOCATION TO THE ADJACENT SPAN RETURN RETURN Figure 9.17 (Continued) 150 IS CL OF THIS SPAN FIXED ? CALCULATE BOUNDS FOR BL BASED ON DOWNSTREAM SPANS IS BL OF THIS SPAN FIXED ? CALCUALTE BOUNDS FOR BL BASED ON DOWNSTREAM SPANS BOUNDS FOR BL ARE ESTABLISHED SEARCH FOR CLOSET CONSTRAINED UPSTREAM SPAN IS CL OF THIS SPAN FIXED NO ’ YES THIS THE FIRST SPAN CALCULATE BOUNDS FOR BL BASED ON UPSTREAM SPANS IS BL OF THIS SPAN FIXED is BL OF PREVIOUS SPAN FIXED ? 9 Figure 9.17 (Continued) 151 2 CALCULATE BOUNDS FOR SL. CALCULATE ALL SL'S WITHIN BOUNDS IS THIS THE LAST SPAN SL IS SPECIFIED AS MIN. SL FOR THIS SPAN CONSIDER THE NEXT UPSTREAM SPAN CALCULATE BOUNDS FOR BL BASED ON UPSTREAM m u z ____ IS BL OF THIS SPAN FIXED SELECT BOUNDS FOR BL ? NO" MYES s ? SINGLE VALUE FOR BL E CALCULATE TOTAL AVAILABLE LENGTH FOR ALLOCATION TO THE ADJACENT SPANS Q RETURN IS THIS THE LAST SPAN ^ Figure 9.17 (Continued) SEARCH FOR THE CLOSEST CONSTRAINED UPSTREAM SPAN CALCULATE NO. OF BL'S, THE VALUE OF EACH BL, AND CORRESPONDING SPAN LENGTHS ^ CALCULATE UPPER BOUNDS FOR ASL YES IS x CL OF THIS SPAN FIXED NO CALCULATE UPPER BOUND FOR ASL CALCULATE UPPER BOUND FOR ASL YES BL OF THIS SPAN FIXED NO CALCULATE UPPER BOUND FOR ASL YES THIS THE LAST SPAN IS CL OF THIS SPAN FIXED ? LAST SPAN IS REACHED IS BL OF THIS SPAN FIXED ? Figure 9.17 (Continued) 153 CALCULATE LOWER BOUND FOR ASL / IS \ THIS SPAN ADJACENT TO THE SPAN UNDER CONSIDERATION NO CALCULATE LOWER BOUND FOR ASL CALCULATE LOWER BOUND FOR ASL CALCULATE UPPER BOUND FOR ASL SELECT UPPER AND LOWER BOUNDS FOR ASL CALCULATE ALL VALUES OF ASL CALCULATE TOTAL AVAILABLE LENGTH FOR ALLOCATION TO THE ADJACENT SPANS RETURN Figure 9.17 (Continued) Table 9.3 Subroutine SLC Variable Definition List VARIABLE NAME VARIABLE CHARACTERISTICS UNITS DESCRIPTION BBS Type:Real Global:Common.In Stations Beginning Bridge Station CMNSL Type:Real Feet Calculated Minimum Span Length for the uncon strained bridge CMXSL Type:Real Feet Calculated Maximum Span Length for the uncon strained bridge D Type:Real.Array Global:Common.Out Feet A two dimensional array representing span lengths for the span under consideration DADJ Type:Real.Array Global:Common.Out Feet A one dimensional array representing span lengths for the adjacent upstream span DADJMN Type:Real Feet Minimum value in the array DADJ DADJMX Type:Real Fegt Maximum value in the array DADJ DELL Type:Real Global:Common.In Feet Incremental Span Length DMAX Type:Real Feet Maximum value in the DMIN Type:Real Feet Minimum value in array D array D Table 9.3 (Continued) Subroutine SLC Variable Definition List VARIABLE NAME VARIABLE CHARACTERISTICS UNITS DESCRIPTION FIX Type:Logical Global:Common.In None FIX = TRUE designates that the bridge includes constrained spans. FIX = FALSE mean the bridge is unconstrained FIXL Type:Logical Feet As defined by the equations which it appears in FIXV Type: Real Data:Read in Feet The value of constraint K Type:Integer.Array Global:Common.Out None One dimensional array representing the number of values for D corresponding to each value of bent location KADJ Type:Integer Global:Common.Out None Represents the number of values for DADJ KSADJ Type:Integer None A counter on different values of DADJ M Type:Integer Global:Common.Out None Counter designating number of values for bent location N Type:Integer Global:Common.In None Number of the span under consideration NCHK Type:Integer Global:Common.Out None Check indicator used in allocating total avail able length to bent location and adjacent upstream span length. Table 9.3 (Continued) Subroutine SLC Variable Definition List VARIABLE NAME VARIABLE CHARACTERISTICS UNITS DESCRIPTION NCS Type:Integer Data:Read in None Number of the constrained span NN Type:Integer None Number of the span downstream to the span under consideration NNBK Type:Integer Global:Common.In None Number of the block of input data on the disk NS Type:Integer Global:Common.In None Number of spans in the bridge SMLES Type:Real.Array Data:Read in Feet Specified Minimum Length SMNSL Type:Real Global:Common.In Feet Specified Minimum Span Length for all spans SMXSL Type:Real Global:Common.In Feet Specified Maximum Span Length for all spans SUMSL Type:Real Feet Sum of Span Lengths SYS IN Type:Integer Global:Common.In None Card reader unit number SYSOT Type:Integer Global:Common.In None Line printer unit number for Each Span Table 9.3 (Continued) Subroutine SLC Variable Definition List VARIABLE NAME VARIABLE CHARACTERISTICS UNITS DESCRIPTION TALA Type:Real Global:Common.Out Feet Total available length for allocation TLB Type:Real Global:Common.In Feet Total Length of the Bridge TC Type:Integer Data:Read in None Type of Constraint. TC = 0 means unconstrained span. TC = 1 means span center line is specified. TC = 2 means bent location is specified X Type:Real.Array Global:Common.Out Feet A one dimensional array representing values of bent location for each span XCON Type:Rea1.Array Global:Common.Out Stations A one dimensional array representing values of bent location for each span XFIX Type:Real.Array Data'.Data statement Feet A two dimensional array representing the type and the value of the constraint for each span XMAX Type:Real Feet Calculated maximum value of X based downstream spans on the XMAXA Type:Real Feet Calculated maximum value of X based upstream spans on the XMIN Type:Real Feet Calculated minimum value of X based downstream spans on the Table 9.3 (Continued) Subroutine SLC Variable Definition List VARIABLE CHARACTERISTICS UNITS XMIINA Type:Real Feet Calculated Minimum value of X based on the upstream spans XMND Type:Real Data:Data statement Feet Selected minimum value of X to be used in next call to SLC to calculate span lengths XMXD Type:Real Data:Data statement Feet Selected maximum value of X to be used in next call to SLC to calculate span lengths WKF1 Type:Integer Global:Common.In None Work File 1. Name of the input data file on the disk WKF2 Type:Integer Global:Common.In None Work File 2, Name of generated data file on the disk VARIABLE NAME DESCRIPTION 159 9.1.4 Branch Absorption Routine 9.1.4.1 Purpose. The branch absorption routine (sub-routine TABABS) is designed to generate a Dynamic Programming table for perform ing optimization over deck types and span lengths. The cost column asso ciated with this table includes best costs for all downstream stages in addition to the cost of the deck stage in the span under consideration. The procedure used in obtaining this table is called branch absorption. 9.1.4.2 Discussion of General Logic. Subroutine TABABS is supplied with arrays TABA, TABB and their associate cost columns ACST and BCST. Table A constins deck types and span lengths for the span under con sideration and bent locations for the adjacent downstream span. The cost column ACST represents total cost of all downstream stages excluding the costs for the bent and deck stages associated with the span under con sideration. The columns of Table B represent different values of bent location, span length and deck types for the span under consideration, as well as values for span length and deck type for the adjacent up stream span. The values of leftover length to be allocated to the downstream spans are also included in TABB. The associated cost column BCST gives the costs for the selected bents in the span under consider ation. The program logic is to incorporate ACST, BCST and the deck cost, of the span being considered, into a single cost column. This is accomplished by selecting rows from TABB and finding corresponding rows from TABA and adding associated costs. corresponding rows is based on the following: The criteria for selecting For the span under con sideration, the deck type and span length entries in the selected rows of both tables should match. In addition, the leftover length entry in TABB should also match the value of bent location in the selected row of TABA. Once corresponding rows in both tables are determined, with the given values of span length and deck type, the deck cost is obtained from the deck table and is added to the selected costs from BCST and ACST. It must be noted that branch absorption does not affect the entries in TABB, only the cost column BCST is revised to represent the new total costs. ENTER SET UP LOOP TO CONSIDER ALL OCCUPIED ROWS OF TABLE B CONSIDER A ROW FROM TABLE B SET UP LOOP TO CONSIDER ALL OCCUPIED ROWS OF TABLE A CONSIDER A ROW FROM TABLE A IS LEFT OVER LENGTH FOR THIS SPAN EQUAL TO THE BENT LOCATION FOR THE JAGENT DOWNST SPAN 9 IS DECK TYPE FOR THIS SPAN EQUAL TO THE DECK TYPE WHEN THIS SPAN WAS AN ADJACENT UPSTREAM PAN Figure 9.18 Macroflow Chart for Subroutine TABABS 162 / is x ^ S P A N LENGTHX FOR THIS SPAN \ EQUAL TO THE SPAN LENGTH WHEN THIS SPAN WAS AN ADJACENT \ UPSTREAM SPAN X YES FOR THIS SPAN LENGTH AND DECK TYPE SELECT DECK COST FROM DECK TABLE ADD COST COLUMN OF TABLE B AND CORRESPONDING COST COLUMN OF TABLE A AND DECK COST. ENTER THE RESULTS IN THE PROPER ROW OF COST COLUMN OF TABLE B X NO HAVE X ^ ALL ROWS OF TABLE B BEEN CONSIDERED YES RETURN Figure 9.18 (Continued) NO Table 9.4 Subroutine TABABS Variable Definition List VARIABLE NAME VARIABLE CHARACTERISTICS DESCRIPTION UNITS ACST Type:Real.Array Global:Common.In Dollars A one dimensional array containing total cost of all bridge components considered BCST Type:Real.Array Global:Common.In/ out Dollars A one dimensional array containing total cost of all bridge components considered CNST Type:Real Global:Common.In None Constant number used for calculating sections numbers in the deck table DELL Type:Real Global:Common.In Feet Specified incremental span length DKTB Type:Real .Array Global:Common.In Variable Deck table. See Table 9.1 IDKTB1 Type:Function statement None Used to calculate section numbers in the deck table. IDKTB2 Type:Integer .Array Global:Common.In None See Table 9.2 LSTROW Type:Integer Global:Common.In None See Table 9.1 MSGR Type:Integer Global:Common.In None See Table 9.1 163 Table 9.4 (Continued) Subroutine TABABS Variable Definition List VARIABLE NAME VARIABLE CHARACTERISTICS DESCRIPTION UNITS N Type:Integer Global:Common.In None Number of the span under consideration NDT Type:Integer Global:Common.In None Absolute row number in DKTB NNDK Type:Integer Global:Common.In None Number of the block of input data on the disk NRTABB Type:Integer Global:Common.In None Total number of rows in Table B NEW Type:Integer None Number of a row inDKTB NS Type:Integer Global:Common.In None Number of spans inthe bridge ROMA Type:Integer Global:Common.In None Number of occupiedrows in TABA and ACST ROWB Type:Integer Global:Common.In None Number of occupiedrows in TABB and BCST SEC Type:Integer None Section number in DKTB. See Table 9.1 SL Type:Real Feet Span length t 164 Table 9.4 (Continued) Subroutine TABABS Variable Definition List VARIABLE NAME VARIABLE CHARACTERISTICS UNITS DESCRIPTION SYS IN Type:Integer Global:Common.In None Card reader unit number SYSOT Type:Integer Global:Common.In None Line printer unit number TABA Type:Integer.1/2 word Global:Common.In Variable See Table 9.1 TABB Type:Integer.1/2 word Global:Common.In Variable See Table 9.1 WFKl Type:Integer Global:Common.In None Work file 1. Name of input data file on the disk WFK2 Type:Integer Global:Common.In None Work file 2. Name of the generated data file on the disk 166 9.1.5 Table Optimization Routine I 9.1.5.1 Purpose. Table optimization routine I (subroutine TAB0P1) is designed to select the best deck types for all values of span length for the span under consideration. The optimization is accomplished by a systematic selection of minimum cost entries from array BCST and the corresponding rows from TABB. 9.1.5.2 Discussion of General Logic. The main program, through a common area, supplies subroutine TAB0P1 with arrays TABB and BCST. The fifth column of TABB contains deck types corresponding to every span length for the span under consideration. If there is more than one deck type available for a given span length, the corresponding number of entries also exist in the fifth column of TABB with sequen tially increasing numbers for each deck type. For example, if four deck types are available for a given value of span length, numbers 1,2, 3 and 4 appear in the fifth column of TABB. It should be noted that there is a one to one correspondence between the deck types in TABB and the deck table for a particular span length. The optimization over deck types starts by searching along the fifth column of TABB to determine how many deck types are recorded for a given value of span length. If only one deck type is found, no opti mization is performed and that row with its related cost entry is selected. However, if more than one deck type is found, then by searching the associated cost entries in BCST, the minimum cost value and its corresponding row from TABB are selected. This procedure is continued until all occupied rows in TABB are checked. 167 As the optimization over deck types is being performed, the selected rows are moved to the top of TABB and BCST such that the final rearranged arrays contain only the selected data representing the optimum values. For span number one, the recorded final information from TABB and BCST are copied in TABA and ACST, which are referenced when the next branch absorption is performed. c ENTER START WITH THE FIRST ROW OF TABB SELECT THE NEXT ROW IN TABB IS THE DECK TYPE ENTRY IN THIS OW EQUAL TO DECK TYPE 1 ? SET UP A SECTION WITH THE FIRST ROW AS ESTABLISHED AND THE LAST ROW - NO. OF THE ROW UNDER CONSIDERATION-1 I SELECT MINIMUM COST ENTRY FROM BCST IN THIS SECTION MOVE THE ROW CORRESPONDING TO THE MINIMUM COST ENTRY IN THIS SECTION TO THE TOP OF TABB O Figure 9.19 Macroflow Chart for the Subroutine TABOP1 A THE FIRST ROW OF THE NEW SECTION IS THE LAST ROW OF PREVIOUS SECTION PLUS ONE NO . IS THE LAST ROW IN TABB CONSIDERED ? IS SPAN NUMBER ONE UNDER CONSIDERATION COPY THE NEW TABB AND BCST INTO TABA AND ACST RETURN Figure 9.19 (Continued) Table 9.5 Subroutine Variable Definition List VARIABLE NAME VARIABLE CHARACTERISTICS AGST Type:Real Global:Common.Out Dollars A one dimensional array containing total cost of all bridge components considered. BCST Type:Real Global:Common.In/Out Dollars A one dimensional array containing total cost of all bridge components considered. FIRST Type:Integer None Number of the first row of the section for selecting the minimum cost. LAST Type:Integer None Number of the last row of the section for selecting the the minimum cost. LIT Type:Integer None Index indicating smallest value of BCST in the designated section. N Type:Integer Global:Common.In None Number of current span being considered. ROW Type:Integer None Number of current row in arrays TABB and BCST. ROWA Type:Integer Global:Common.Out None Number of occupied rows in arrays TABA and ACST. ROWB Type:Integer Global:Common.In/Out None Number of occupied rows in arrays TABB and BCST. UNITS DESCRIPTION Table 9.5 (Continued) Subroutine TAB0P1 Variable Definition List VARIABLE NAME VARIABLE CHARACTERISTICS TABA Type:Integer.Array. 1/2 word Global:Common.In/Out Variable A two dimensional array representing a condensed dynamic programming summary table. For details see Table 9.1. Type:Integer.Array. 1/2 word Global:Common.In/Out Variable A two dimensional array representing a dynamic programming summary table. For details see Table 9.1. TABB UNITS DESCRIPTION 172 9.1.6 Table Optimization Routine II 9.1.6.1 Purpose. The main program, through the common areas, supplies this routine (subroutine TAB0P2) with arrays TABA, TABB, ACST and BCST. The primary function of subroutine TAB0P2 is to opti mize span lengths for the span under consideration. performed in TABB and BCST. This operation is Upon completion of the optimization, the final results are transferred into TABA and ACST which are used in the next call to subroutine TABABS. 9.1.6.2 Discussion of General Logic. The results of the optimization over deck types, corresponding to a given span length for the span under consideration, are recorded in TABB and BCST. Sub routine TAB0P2 accesses these two arrays through a common area. The third column of TABB contains all values of bent location (state variable X). Starting with the first row in TABB, a search along this column results in the securing of a number of rows having a common value of bent location. This constitutes a section in TABB. The fourth column of TABB contains the values of span length corresponding to every value of bent location. A search for different values of span length along the fourth column of the established sec tion results in one of the following possibilities: If there is no change in the value of the span length, no optimization can be per formed as there are no choices. moved to the top of TABB. Thus, the section in its entirety is However, if more than one value of span length is found, the section is subdivided into a number of subsections, one for each value of span length. Optimization over the span length 173 is performed by selecting the minimum cost entry among the first rows of all subsections, the second rows of all subsections, and so on. These minimum cost values and their corresponding rows are then trans ferred to the top of arrays BCST and TABB. Returning to the third column of TABB, the next section having common value for the bent location is determined and the procedure out lined before is followed until all the rows of TABB are exhausted. Finally, the now condensed TABB and BCST are copied in TABA and ACST to be accessed by subroutine TABABS. enter SEARCH ALONG THE THIRD COLUMN OF TABB TO LOCATE A CHANGE IN THE VALUE OF BENT LOCATION. SET UP A SECTION SEARCH ALONG THE FOURTH COLUMN OF TABB TO DETERMINE HOW MANY SPAN LENGTHS CORRESPOND TO THE CURRENT VALUE OF BENT LOCATION. CALCULATE THE NUMBER OF SUBSECTIONS BASED ON THE DIFFERENT VALUES OF SPAN LENGTH FOR THE CURRENT BENT LOCATION / NO ARE THERE ANY SUBSECTIONS FOR THE CURRENT VALUE OF BENT LOCATION MOVE THE ENTIRE SECTION TO THE TOP OF TABB AND BCST YES SELECT THE MINIMUM COST VALUES BY COMPARING THE COST ENTRIES OF CORRESPONDING ROWS FROM ALL SUBSECTIONS. Figure 9.20 Macroflow Chart for the Subroutine TABOP2 175 MOVE THE SELECTED ROWS TO THE TOP OF TABB AND BCST CONSIDER THE NEXT VALUE OF BENT LOCATION IS ^ THE LAST ROW IN TABB CONSIDERED YES COPY THE NEW TABB AND BCST INTO TABA AND ACST RETURN Figure 9.20 (Continued) NO Table 9.6 Subroutine TABOP: Variable Definition List VARIABLE NAME VARIABLE CHARACTERISTICS ACST Type:Real.Array Global:Common.In/Out Dollars A one dimensional array containing the total cost of all bridge components considered. BCST Type:Real.Array Global:Common.In/Out Dollars A one dimensional array containing the total cost of all bridge components considered. BRW Type:Integer None Designates the number of the first row in a section. ERW Type:Integer None Designates the number of the NRPS Type:Integer None Designates number of rows per subsection. NRW Type:Integer None Designates number of rows in a section. NSEC Type:Integer None Designates number of subsections. OPCST Type:Real Dollars Optimum cost. Selected minimum cost corresponding to the best span length for the given value of bent location. ROW Type:Integer None A counter for the number of rows in the rearranged TABB and BCST. ROWA Type:Integer Global:Common.Out None Number of occupied rows in arrays TABA and ACST. ROWB Type:Integer Global:Common.In/Out None Number of occupied rows in arrays TABB and BCST. UNITS DESCRIPTION last row in asection. 176 Table 9.6 (Continued) Subroutine TAB0P2 Variable Definition List VARIABLE NAME VARIABLE CHARACTERISTICS TABA Type:Integer.Array. 1/2 word Global:Common.In/Out Variable A two dimensional array representing a condensed dynamic programming summary table. For details see Table 9.1. Type:Integer.Array. 1/2 word Global:Common.In/Out Variable A two dimensional array representing a dynamic programming summary table. For details see Table 9.1. TABB UNITS DESCRIPTION 178 9.1.7 Table Optimization Routine III 9.1.7.1 Purpose. Subroutine TAB0P3 is supplied by the main program through the common area with two arrays; TABB which is a summary table containing information representing several optimum and/or near optimum bridge designs, and BCST which contains the cost associated with each bridge. TAB0P3 performs two functions. First, it reorders the summary table and the cost array so that the cost array is ranked in order of ascending cost. Second, it subdivides the ranked cost array into sections. Each section consists of the near optimum bridges that fall within a user specified range of percentages of the optimum bridge. 9.1.7.2 Discussion of General Logic: BCST proceeds as follows: The reordering of TABB and Starting with the last element in BCST the routine compares each element to the one immediately above it. When ever a low entry is numerically less than the entry above it, the entries exchange position, as do the associated lines of information in TABB. This procedure moves the information about the optimum bridge structure to the top of TABB and its corresponding cost to the top of BCST. The same procedure is again repeated until tables BCST and TABB are recon structed in the order of ascending cost. The second objective of TAB0P3 is to count the number of near optimum costs that are within each specified percentage range. The per centage ranges are specified in the form of a percentage maximum (PCMAX), and an incremental percentage (PCINC) which will be incremented up to the maximum. The subroutine first calculates the number of increments (NINC). Then, the highest possible cost for the specified value of PCINC is evaluated. Starting with the lowest non optimum cost in BCST, the routine compares each entry to the calculated maximum cost. When an entry exceeds this cost the routine ceases checking and places the number of bridges in the first element of the array PERCNT. The pro cedure then starts again, this time calculating the highest possible cost for twice PCINC. Again starting from the first non optimum, the routine counts the number of bridges that cost less than the recently calculated maximum cost and enters that number in the second element of PERCNT. This process continues until all percentage increments have been accounted for. Finally, starting with the last entry in the array PERCNT, the routine takes each element, subtracts from it the entry immediately preceding it, and enters the result in its former location. This final manipulation causes each element of PERCNT to represent only the number of bridges which fall within the each specified range. 180 C ENTER COMPARE EACH ELEMENT IN BCST TO THE ONE ABOVE IT STARTING WITH THE LAST ELEMENT IS THE ENTRY LESS THAN THE ONE ABOVE IT ? EXCHANGE THE POSITION OF THE TWO ELEMENTS AND THE CORRESPONDING ROWS IN TABB IS THE TABLE COMPLETELY REORDERED CALCULATE THE MAXIMUM COST FOR A PERCENTAGE INCREMENT COMPARE EACH ENTRY IN BCST TO THE MAXIMUM IS THE ENTRY GREATER THAN MAX. YES ? B Figure 9.21 Macro Flow Chart for Subroutine TABOP3 ^ HAVE \ ALL ENTRIES BEEN CHECKED NO YES ^HAVE \ ^ ALL ^ INCREMENTS 1EEN ACCOUNTED \ FOR ^ YES RETURN Figure 9.21 (Continued) WRITE THE NO. OF ENTRIES LESS THAN THE MAXIMUM IN THE ARRAY PERCNT Table 9.7 Subroutine TABOP3 Variable Definition List VARIABLE NAME VARIABLE CHARACTERISTICS BCST Type:Real Array Global:Common.In/Out Dollars A one dimensional array containing total cost of all considered bridge components CHECK Type:Real Dollars Highest possible cost of near optimum bridge in a given percentage range CKNI Type:Real None Check for number of increments JTES Type: Integer None Counter for rows being compared NINC Type:Integer None Number of increments NLAS Type:Integer None Number of rows in TABB minus one NOB Type:Integer Global:Common.Out None Number of optimum bridges PERCNT Type:Integer.Array Global:Common.Out None An array representing number of near optimum bridges for each percentage range PCINC Type:Real Global:Common.In None Incremental percentage for near optimum bridges PCMAX Type:Real Global:Common.In None Maximum percentage for near optimum bridges UNITS DESCRIPTION Table 9.7 (Continued) Subroutine TABOP3 Variable Definition List VARIABLE NAME VARIABLE CHARACTERISTICS RAT Type:Real None Ratio of PCMAX and PCINC used to determine NINC ROWB Type:Integer Global:Common.In Dollars Number of occupied rows in array TABB and BCST TABB Type:Integer.Array. 1/2 word Global:Common.In/Out Variable A two dimensional array for definition see Table 9.1 Type:Integer. Array Variable A word array used in reordering TABB. WORK UNITS DESCRIPTION 9.1.8 Computer Program Listing N P R O G R A M FOR BRIDGE O P T I M IZATION 00000100 1NTEGER42 T A B A •T ABB •S P N L G H .O C K T Y P •B N T L C N 00000200 00000300 COMMO N / T A B L E S / T A B A ( 600 * 3 > • TABBI6 0 0 0 * 6 ) • A C S T (6001•B C S T (6000) 1 .ROWA.ROWB »NR T ABB.LSTROW.MSGR 00000400 COM M O N / O E C K / D K T B ! 5 0 . 7 ) • 1DKTB2I2S.2).CNST.NOT 00000500 OCOMMON/ L E N G T H / X ( 100>.X C O N (1001.K ( 1 0 0 ) • 0 < 1 0 0 . 3 0 ) »DA0J(30> 00000600 00000700 1 .FIX.BOS* T L B •S M X S L •S M N S L •M . K A O J •T ALA.NCHK C OM M O N / O I S K / N R O W ( 1 0 0 ) *NFBLK(I0 0 1 • N L B L K ( 1 0 0 ) .NSEC 00000800 00000900 C O M M O N / E X S P A N / ELSL. E L S R . E R S L . E R S R 00001000 COMMON / V A L U E / O E L L . N S . N 00001 too COMMON/OPT 10/ P E R C N T (20 ) .NOB.PCINC.PCMAX C O M M O N / 10/ S Y S I N •SYSOT *W K F 1»W KF2.NNBK 00001200 0 IMENSION O K P R (50•51 00001300 INTEGER S Y S I N •S Y S O T •W K F 1• WKF2 00001400 00001500 INTEGER R O W . R O W A •ROWB 00001600 INTEGER S E C . B R W . E R M * S E C A O J # B R W A O J * E R W A D J 00001700 INTEGER PERCNT DEFINE FILE 1 U 2 1 0.600.U.IBLKI 00001800 00001900 DEFINE FILE I 2 ( 2 0 0 * 8 0 * E . N N B K > 00002000 LO G I C A L FIX 1DK T B 1 ( 0 1S T )s o I S T/DELL+CNST 00002100 DATA FIXTES/3HFI X/ 00002200 00002300 MR ITEC 8.1000) ■ FORMAT 1 5 X . ' S T A R T OF E XECUTION OF BRIO G E OPT I M I Z A T I O N - ZAP - ZAP* >00002400 00002500 C ALL IDENT R E A D I W K F 2 *N N B K • t >O Q S I •B B S Z •E B S I . E B S 2 •T L B *S M X S L •SMNSL* OELL 00002600 R E A O (W K F 2 *NNBK »2 )F IXED.NSMIN »N S M A X . P C 1N C •P C M A X • INOES* MSGR 00002700 RE A O (WKF 2•N N B K •3 IUCC 0• U C C B •UC S •USPP 00002800 00002900 FI N O (W K F 2 *NNBKI 00003000 F IX».FALSE* IF(FIXEO*E O * F I X T E S I F I X * * TRUE* 00003100 B B S = 100*A B B S 1+BBS2 00003200 00003300 EB S = I 0 0 . * E 8 S I * E B S 2 IF!NSMAX.EO.O> NSMAX a N S M I N 00003400 00003500 IF(FIX) GO TO 9 CTLU=S M N S L * N S M A X 00003600 00003700 IF(C T L 8 * L E * T L B > GO TO 9 00003800 W R I T E (S Y S O T « 500 ) SMNSL.NSMAX 00003900 SMNSL=*SMNSL— OELL 00004000 CTLB>SMNSL*NSMAX 00004100 IF (CTLBaLE* T L B ) GO TO 8 00004200 GO TO 7 00004300 W R I T E ! S Y S O T . 501) SMNSL 00004400 CNST*-SMNSL/DELL+1.0 00004500 S L = SMNSL— OELL 00004600 SL=SL*DELL CALL D K D S N I S L *UCS.UCCO.RDtfY.GUTT.OKPR.NDK) 00004700 00004800 CALL OKOP TISL . D K P R . N D K •MSGRI IF (SL*LT * S M X S L ) G OTO 10 00004900 0 0005000 I F ( M S G R a G E * 1 )CALL WTTABI3.0) 0 0005100 I F I M S G R * E O * 1) WRITE!SYS0T.5) 00005200 IF ( INDE S . E Q . 1) G O TO 12 0 0005300 ELSL^O* 00005400 ELSR=0. 0 0005500 ERSL°0* 00005600 ERSR«0. 00005700 GO TO 15 00005800 R E A O (WK F 2 *N N B K •4 1 E L S L . E L S R . E R S L . E R S R 0 oo •4 O M it > r • 0 X a •< 0 • ** H > O r > O u a X 0 (A > O 0 Im W W M O O 0 X 0 a O 0 z > -« a a 0 * pm H u > z B «b «* O r u X n 1 O X • X m 0 • u, 0 lm u fO X 0 mm X m z > X a 0 a it u zm a a 0 > • 0 *• H ♦ *»c • 0 • u X > 0 aa z 0 a • a > au . • X z > X • 0 a > X > u 0 z a 1 pm u > r > 1 X aa a a 0 a a a r r mm mm u Hz 2 0 z a a l 0 mm • 0 m r r O 30 a a0 z z u mm z m m • to* 1 • pm mm ** a 0 a z a 1 a a 0 0 pm • a u a r 1 0 a X a • • • mm a z 0 u 0 • a 0 w u ro o o o H O •4 O a 0 S O r z z B M H m a * a 0 • 4 • a 0 > r r 2 a aa a m z za z mm a a z a ■4 a O • a X 0 a a a • a it 0 m m • • a a a • a m • pm mm a n 0 r a pm -4 m mm > > r r r Z z -4 H *4 > > O 0 mm mm pm • 10 • •• •• a o a a 0 0 A O A O >H A z z Z Z a > u a 0 0 0 it a z z 0 mm «4 «4 •4 BB M z a C c 0 m a z mm u 0 A a 2 •4 Z a 0 z > 0 > •44 0 -4 -4 > > 0 0 > 9 A > a 0 H 0 •4 • 4 > 0 a a a > 0 0 mm a a > > mm a a 0 0 0 0 a 0 0 w u • a w -4 w A H H H -4 O O > > > 0 0 0 0 O 0 0 mm mm mm a a a 0 « a u 0 0 • z 0 a a A a • 0 a < a • u 1 0 pm ym mm H K O w 0 w u H pm mm z z mm ■4 0 • 0 o a • X a 2 V a • 3 o c D• • o 03 a o • o sm O 0 0 0 lm u 0 a z • m a z H a H 0 mm mm a O O z X X ♦ -4 -4 mm 0 0 O ro X -4 O IB a 0m fO A • a m A • h> w 1 pm z *■ X a O a 1 1 O O z X Ul u a 0 0 z a a H pm z • z A > r r a r A Z u •B O O N 0 O 2 a H z a z pm 2 z a • • X a mm mm Z a z > X o • sm • r a (a r a a • o o 0 x o a B o z H •M -4 a H 9 a z mm 0 0 O O 0 • O w m a *< a a ro O Cl O O 0 mm 0 a 0 0 r 0 ♦ IB cm 0 a u a am Hz zA A > r 0 z a < • • rn A r C a ■ 4r H• a a* > a • X u u u w u. z- 0 ♦ • z p* r m 0 • •4 2 • a m 0 • • -4 • a 1 o0 z mm a li 0 «• z • 4a M m 0 a 4a > 0 0 mm a • • ro «b s o OB • 0 0 z z z • u «# ■< a 0 mm a ■4 > 0 0 mm a O z z z z z z z z z z • • • Ul ro ■» mm u U H mm 0 a 0 0 FINDCWKF2«NN0K> (A m a n > 0 c > 00 o • z -4 0 a ~ o e • r ■3 a r r • • 0 •4 0 * 0• o ao • z 3 A ■1 • OX A• o c 0 a a • c A 03 A a m 0 r a c (A a o X •4 0 a c. • a O0 O0 O0 0 0 0 0 0 0 0 0 0 OOO O OP p p OOOO OOp 0 OOO O OP p p pm m pm pm pm pm pm pm pm pm m pm IB pm m pm pm pm pm pm pm O O O O O O P pm O O0 N 0 a u u 0 a » u ro O 0 0 0 0 OO OOOO p p p O0 0 0 0 O OOO OOp p p p p P P 0 p p P P P p p P P P pm pm pm P P P P P O« ro •B P O 0 p P P P P P P P P P P P P P P P P 9 O0 •4 0 P P P P 0 p p p p 0 OP P p 0 p p 0 OP P 0 p 0 p P OP P p p 0 p P P 0 O 0 0 0 O» 0 ro IS 0 a » p p p 0 p OP P p p p p p P P P u 0 P P P P P P P P P O0 > 10 P P P P Op P p P p P p 0 0 a • p p p p p p 0 P P 0 OOO p p p p p p p O P 0 0 OOp 0 p 0 p p 0 P P P 9 9 9 p p p p 0 9p 0 PPPPPp p p p 0 0 0 tt N N NN* 4* 4n n u ro IB P O 0 N 0 a u ro pm p p D P P P P Op p p 0 O p p P P P 0 9 P p 0 p p O *4 O P 0 0 0 P P P P 0 P P N0 0 0 0 0 P P P 0 OP OP 0 OP 0 O0 0 9 O0 0 0 0 *4 0 a P p p P 0 p p 0 0 O p p p p O 0 0 p e O p p p p P 0 0 0 0 0 » u ro pm P p 0 p O P p p p O P p Q000S900 0 0 0 00 Ul <£> 00011700 00 o o o o o © e © © o o e e o o e e o o o o o o o o o o o o o o o c o © © o m ft fO ♦ a © N a © o mt f t n ♦ mt «* ft ft f t f t ft ft ft f t ft ft n n n m n o o O © o © © © o O o © o o wo © S a p o ro n f0 ro n ♦ © mt mt mm ■a ** ap aP aP aP pp • • aa ■a mm mm e o e © O o © o o o o o O o e © © O © © © o o o o o o P o o o o o © o o O © o o o o o o o o o o o o o O o o o o © o o o O o o © o o © o o o © o (A CD O O -» k. A • n a o o < a a o ADJ=IOKT02(SECAOJ.l> o -* © a x • •^ B O O < s •> o <a o* o • •» © o UJ «C to a (A B «■> S o• a• (M UJ OS X o — • "» V) X - o < B • ap V) • ♦ a z© •> a - — u; o n * o to < o n *o> WA* - ft a < <0aM > to a •> • -♦ a u H O “> X n a X q b a «% a a u z u a z • O to © © xa z b ■> « o a a n IA O 4-a o -> ^ m fr» *0 M WP 0^0 < o - OHO o nj n nJ BL B < < © * bII oo a a -> o ->w a tt t o ^ < o uj o “> V) 03 l i i o o -> u o - a ap aa mm O O mm mm ft mm aa aa mm pa pa O o O © o o o o © O O O mm O © o © O o © o o o ooo ooo o o o © O O © mrn a a« < • K • z I •I UJ I a* J i ♦ • : B B i O O< a z « — B U. o a m • a» < a UJ «p a fr» O X X a a w mm -> a p • a X •9 o a a B o O < z z mm mm •» < mm O X o -> p* n « n t! n • O UJ « a o a k- CL z mm UL — a a a • M o a > a «p UJ pp a X mm mm a S Q > P a • o o B o P • X H a o m z a W V0 mm e x H O mm mm *• a• o mm pa o o o © O O o o o o o o 2 a • • a a z o *■*a o» z• ~ a (A O za - o z • X o o *•z V) o mm • a © © © O O O X• < aa •o ~& & •a O • h a n < pa «a mm o o © o' © e O O o o o o o O o o o o o o o o o o o o © o o o o © o © o o O o ft ro « s H N N N xa *» o ■> J o •a o o p p < •oM %» CL f•t mm mm mm O O O O o © © o © o o a P Q o• z• A © © o AI •a • a © O o o o o o o o © O © © © © © © 9 e o o o o o © o © © o © o © o O o O o o © o O o o o o o o o o © © o © © o ft ro ♦ a p K a P N a p o A ft ro # a p N a p © ♦ ♦ * ♦ ♦ a a a a a a a a a a p p p p p P p P •9 n a o o <© X © © © o o o ro ♦ ♦ ♦ ft a* «a f t n • • • B B B 0 O O a a S mm w «p o a a a a a < < < Mi H K a z Q 1 mm ft » p« a • ft N B a < M M B w a < M M h mm mm a z mm a X o n u ap M J a J B X u o oo oo © O *•ft*o J J ft u <• «p e < M M B J J J J < < V «p •« Up* o •©•a o• a P n UJ • p • mm . © UJ • • B B B B UJ UJ UJ UJ B O O O O D © © © o ff a a a a a z z z z a o o w M M * • pp n a a mm s a a M M M M M o z z a a a a z z z z B < < < u o o o o O u. u. M ►» M a u u wr u a •• •• « mm •A •a • UJ o • s o a z < a • • ft «* mm mm • o UJ • z • o z o ■P o a a < UJ o UJ • a • e < e < a o M © a a z j z J «p - j «p J < u. < u. u. u •• u •• •• •P • u; z • z pp (L «p a X M M B B J J J J o M < «• «o •© a < M M a # M o a > a e w « UJ M o •P M s < © •p • UJ © • a f t a X a o a o a a M mt < M © B a 0 J M -J z J w J < o < Ik U © u o < B o © pa U A p* mm X a o M B © © •p a J 4 j © z © n < z © Ul < ■P U o a s • a X • a a z z X • o «p ap a o H n a A a z UJ • « z a X >- a z © o j © • a o a X N «p II ap z z n P0 B a u. u. O o z o •" "• a o X o mm • a UJ • s © a z ■p i • mm ft mm mm mm mt • © UJ a • © UJ a • B a UJ • mm ft a M mm mt f t B X o Q M ♦ X B a S mm mm a II II u o © B B It UJ a C •o a M X o a o UJ a a n n © © aP O no 187 MAIN 160 170 tao 190 200 210 215 220 230 240 250 00017500 OCALL BTDSNIEDS.DIMS.KS1 .ERSL.0KT B C J . 6 1 . E R S R . U C S . U C C B . U S P P . 00017600 1 RDMV.GUTT.0P0 8.HT0 0 . P L P 0 B . N P 0 B . T C a B > 00017700 JJ3JJ41 0 0017800 ROMaROM.l OIFCMSCR.EO.il MR1TEC S Y S O T .61 R O M . E B S . D C M S . K S I . E R S L . D K T B C J .6) .ERSR.00017900 0 0018000 I DPOB.NPOB . P L P O B . H T O B 0 0018100 T A B B C R O M . 11=0 00018200 T A B BCROM.2>aO 0 0018300 T ABBCROW ,3>aXCMS) 00018400 T ABBC R O W . 41=0 CMS »KS! 00018500 T ABBCROM.51aJJ 0 0018600 T A B B C R O M . 61 3 X CMS I— DC MS.KS) 00018700 B CST C R O M l ^ T C O B 00018800 CONTINUE 00018900 CONTINUE 0 0019000 CONTINUE 0 0019100 R O M BaROW 0 0019200 I FIMSCR.EO.I1CALL MTTABC2.2) 0 0019300 CALL TABABS 00019400 I FCMSGR.EO.tICALL MTTABC2.31 0 0019500 CALL TAB0P3 00019600 I FCMSCR.GE.lICALL MTTABC2.BI 0 0019700 CALL MTOSK 0 0019800 N L S E C=NSEC 00019900 N REPS=NOB 00020000 DO 190 I S U M * | ,20 00020100 NREPSaNH.EPS+PERCNTC ISUMI 00020200 NSECaNSEC-1 00020300 K REPSaO 0 0020400 K REPSaKREPS.I 00020500 J TESaKREPS 00020600 L S T ROMaNRTABB+l 00020700 IF CNSEC.EO.OIGO TO 215 00020800 NDLKaNFBLKCNSEC1 00020900 F I N D I M K F 1* N B L K 1 00021000 L S T R OMaLSTROM-l 00021100 00 220 Ja|,6 00021200 TABBCLSTROM,J1«TABBCJTES.J1 00021300 BCSTCLSTROMl=BCSTCJTES1 00021400 IF INSEC.EQ.O1G0 TO 240 00021500 SPNLGHaTABBC JTES.4) 00021600 OCKTVPaTABBC JTES.51 00021700 BNTLCNaTABB IJTES.6) 00021800 CALL ROOSK 0 0021900 IFCMSGR.EO.il CALL MTTABC2.6I 00022000 00 230 JTESal.ROMB 00022100 O I F C T ABBCJTES.31.E0.BNTLCN.AND. 00022200 1 T A B B I J T E S . 21 .EQ.OCKTYP.AND. 00022300 2 T A B B I J T E S . 11.E0.SPNLGH1G0 TO 210 00022400 CONTINUE 00022500 1FCKREPS.EO.NREPS1GO TO 250 0 0022600 N S E C aNLSEC 00022700 NBLKaNFBLKCNSEC) 0 0022800 FINO CM K F I * N O L K ) 0 0022900 CALL OUTPUT IBBS1.80S2.BBS.UCS.UCCB.USPP.ROMV.GUT T1 00023000 IF I K REPS.EQ.NREPS1G0 TO 260 00023100 CALL RDDSK 00023200 IFCMSGR.EO.il CAL L MTTA8C2.6I 188 MAIN GO TO 200 CONTINUE WRITEIB.2000) STOP F O R M A T I 8 F 10*01 FO R M A T I A3.7X.2II0.2FI0.0.2I10) FORMAT 14F 10*01 F O R M A T I 4 F 10*0 I O F O R M A TIIHI.45X.*BENT P R O P ERTIES*.//. 1 7 X »•B N T .STA LGH.SPN.LFT. LGH.SPN.RGT. R C N . S P N . L F T . *. 2 • R C N . S P N . R G T • PILE OIA. NO.OF PI L E S PENT.LGH. B N T . H G T .* I O F O R M A T I I X . 1 4 . 1 X.F9.2.4X.F4.0.9X.F4.0.7X.FB.2.5X.F8 .2. I 6X.F5.2.SX.I2.8X.F6.2.4X.F5.I) TA OA. ZAP - ZAP ZAP •> 2000 FORMATISX.*IT RAN. 500 OFORMA T I ( H I . 2 9 X . 4 4 1 • ♦ • ) . / . 30X. 1 •• SPEC IF IEO MINIMUM SPAN L E N G T H ^ •. F 3 . 0 .• FEET ••/ 2 3 0 X . *• IF THIS L E N G T H WAS USEO F O R ALL SPANS OF ••/ 3 3 0 X . •• T H E * . 13.* SPAN BRIDGE. TOTAL BRIDGE L E N G T H ••/ 4 3 0 X .•4 WOULD E X C E E D S PECIFIED BRIOGE LENGTH* *•) 501 FORMATI 3 0 X . •• S PECIFIED MIN I M U M SPAN L E NGTH IS C H A N G E D •*./. 1 30X.*4 TO *. F 4 . 0 . • FEET TO MEET R E Q U I R E M E N T S . •. B X . •••/ 2 30X.44I***!! 510 OFORMATIIHI.29X.39I***>./.30X. 1 •* MAXIMUM TABB ARRAY SIZE IS E X C E E D E D «*./.30X. 2 •• INCREASE TABB DIMENSION **./.30X. 3 3 9 1 * 4 * II 520 F ORMATISX.*M0. OF R OWS IN TABLE B =*.IS> END 260 00023300 00023400 00023500 00023600 00023700 00023800 00023900 00024000 00024100 00024200 00024300 00024400 00024500 00024600 00024700 00024800 00024900 00025000 0002SIOO 00025200 00025300 0002S400 00025500 00025600 00025700 00025800 00025900 00026000 189 BLK DATA BLOCK OATA 1NTEGER42 TABA.TABB INTEGER PERCNT.SVSIN.SVSOT.UKFt.WKF2 COMMON/TABLES/ TABAI600•3).TABUI6000.6>.ACST1600>.BCST(6000> 1 .ROWA•ROWB.NRTABB.LSTROW.MSGR COMMON/OECK/ OKTBISO.7 I.I0KT82(25.2).CNST.NDT COMMON/OPT 10/ PERCNT(20).NOB.PC INC.PCMAX COMMON/10/ SVSIN.SVSOT.WKFI.WKF2.NNBK OATA NRTABB/oOOO/.NDT/O/.PEHCNT/2040/.SVSIN/5/.SVSOT/6/.WKF1/11/ OATA WKF2/I2/ END 00026100 00026200 00026300 00026400 00026500 00026600 00026700 00026S00 00026000 00027000 00027100 190 SLC 10 IS 20 25 30 35 40 43 50 SS 60 61 62 65 SUBROUTINE SLC C O M M O N / L E N G T H / X (100)• X C O N <100>* K <100> » 0 < 100*30> . D A D J (30) 1 .FIX.B0S.TL0»SMXSL»S M N S L . M » K A D J . T A L A * N C H K C O M MON/VALUE/ O ELL»NS*N C O M M O N / 10/ SYSIN* S Y S O T *M K F 1•WKF2*NNBK D I MENSION S M L E S I 1 0 0 ) *XFIX(100*21 L OG I C A L FIX INTEGER T C •S Y S I N * S Y S O T •MKF1*MKF2 DATA X F 1X/20040*/* XMND/0*/*XMXD/0*/ NCHKaO IF IF IX > GO TO 60 I F I N * N E * 1) GO TO 25 CMNSLaTLB-SMXSL«<NS-l) IF ISMNSL*GT * C M N S L 1 CMNSL * S M N S L C M X S L * T L B ~ C M N S L * I N S - 11 IFIS M X S L * L T * C M X S L ) CMXSL * S M X S L KSAOJ«0 KSAOJ»KSAOJ41 0 A D J ( K S A 0 J ) 3 C MNSL*<KSA0J-1)«0ELL IFCDAOJ(KSAOJ)-CMXSL) 10*20*13 KSADJ*KSA0J-1 KADJaKSAOJ x m i n * n *c m n s l XMIN A * T L B — 1N S — N)4CMXSL 1F<XMINA*GT*XMIN> XMIN=XMINA XMAX=N*CMXSL X M A X AaTLB-lNS-Nl«CMNSL i f < x m a x a *l t * x m a x > x m a x =*x m a x a M S a0 MS=MS»1 XlMS)»XMIN+<MS-lI40ELL X C O N ( M S > 3 HBS+X(MS) DM IN=*X (MS )- CN- 1 )4CMXSL IFI DMI N*L T * C M N S L ) 0M|N=CMNSL DMAX = X (MS >-(N - 1)4CMNSL 1F(DMAX.GT#CMXSL) DMAX*CMXSL KS^ O KS»KSM O l M S , K S ) = D M I N f ( K S - l )«DELL 1F(0(MS»KS>-DMAX) 35*45*40 KS^KS-1 K(MS)*KS IF(XIMS)-XMAX) 30*55*50 MS=*MS-1 M»MS IFIN.LT.NS) T A LA»TLB-INS-N-1|*CMNSL GO TO 240 I F ! N * N E * 1) GO TO 65 DO 62 1 = 1 *NS READ I W K F 2 *NN8K*1 )NCS * S M L E S < 1 1 .TC.FIXV FIND <WKF2«NNBK) IF ! S M L E S ( I 1* G E * S M N S L 1 GO TO 61 W R I T E (S Y S O T •2) S M N S L * S M L E S < I ) STOP IF(T C * E Q * 0 ) TC*1 XF IXINCS* TC)*FIXV CONTINUE IF(N*NE«NS> GO TO 85 00027200 00027300 0 0 0 27400 00027500 00027600 00027700 00027800 00027900 00026000 0 0028100 00028200 00028300 00028400 00028500 0002B600 00028700 00028800 00028900 00029000 00029100 00029200 0 0 0 29300 00029400 00029500 00029600 0 0 0 29700 00029800 00029900 00030000 00030100 00030200 00030300 00030400 00030500 00030600 00030700 00030800 00030900 0 0 0 31000 00031100 0 0 0 31200 00031300 00031400 0 0 0 31500 00031600 00031700 00031800 00031900 00032000 00032 1 0 0 00032200 00032300 00032400 00032 3 0 0 00032 6 0 0 00032 7 0 0 00032800 00032 9 0 0 00033000 *o o o o o o © © o e o o G o o o o o o o © o o o o o e io o o o o o o o o o o o O o o o o o o o o o o o o o o > — 01 n 4 d d N o o o — N 4 d o K © o o — N «*) 4 d d N i n n n xi m Xi n i n »*) n n n n n m l o o o o o o o o »o o o o o o >o o o o o o © o « n 4 n 4 4 W n 4 n 4 4 4 n 4 d n r> d n d *> d n d n d d n n o o o o o o o o o o o © o o o o o © o o o o © o o o o o o o o o o o N X © o — 01 m 4 d d 9 © o — OJ n d d o N N K. n N N K. N N s e 9 9 9 n n n f*l m n n r> n n n n n n I»1 o o o o o o o o o oo o o o oo o o o o ©oo oo o Ooo ooo oo oo o o oo o oo o ooo o o o oo oo oo o oo o o oo oo o o o oo © oo oo oo o o o o o oo oo o oo o o oo o o o o o oo oo oo o oo oo o oo u J X O n z d W -I z o <o e -© © o o J K J • UJ Vi 0N o © o o o o * • z o ^ 0 oQ X •z z^z X ZX 4 n © o © o e o o o o © o o o e o o o o © o © — <u m 4 d d d d d o •0 d d d d d n H n in n n n ri n n *M — N 1 X* o o z o o 9 d 9 9 ■0 n 9 *> o oO o oo oo o o o o © o o e o© oo o oo o oo o o o ooo o oo do Cl ft o X d « X < z j« jo UJ M o • « o o H o o ~ — o — o w d z X o o © © o o o o 4 d o N Cl © z oi n • O d 13 — o a o I -H o — — o oo © — O » O ©w Oo — z •^ — ©O d • UJ -• O J — «v— X • •d d N s — — d d UJ UJ J J -x ci d I I ~ -* «• • M• — — — — z ~ • K O X d *-* • U1 O X « ~ *O J •o ^•© x< —d z oo z ♦ x — • d 01 X O -* X O Z O ♦ X d «■*~ ♦ z • • ♦ O N Z •1 • Z • X eg O Cl — z Z d • x ~ X • " Z U J 0 1 d J z z 4 • •♦ ♦ — X -*■ Z I Z I J X ~ J • z 'd 1 - I O z o o o Z O Z Z O O d X X x a -• z ~ — -» • - • z — - ZI O X O X o o d z O CD W1CD • — II I 4 Hi - d — a 3 — —# 3 4 — 4 • • O 4 - - Z X d ——— ii• — Z d Z j J JIU J X X --X-I/IN H 01 X X Z Z •• u. u» u. -* O x — iu — d — — x — © — n x uj o d KXUJ J-ll-ll. ♦ O < tX «■— - — x x X X xxuj — — x j x x ♦d < i x — ~ — • H II — —Z V- X X n n z n z i u , o x z d n o « - o u . u.n n o n n n — •tiufixttz d x z o n o n X - U. ~ J J - U, U. * H O n O R • fr» X X Z X *• Z X ~ z z z x z d x d o x • o x -> w ~ • ♦ x — d d ♦ X X « J W J V - J -‘ Z d X O Z X O X • o x ~ — x - - < — n — un z — n x z z — — - < - — < X O — H — - — < — H 11X — II Z Z z z - z z — — — — x X X fl*»XlLSlLZlLV)l/)wlLI/lwO« - o u . u z x o n z z — U l U Z l L X l U Z l L d d - ltd — o — - H K . U . D D f( U.U.U.-O — O z x o - o - z - x x o - x x o x 0 0 - - X X 0 X x x x x - z - o - o ~ x x o ~ x x o x O — — — d d ----U.dU.dlU • •V d Vi X Z ~ d <v • • »- z o N O Z* —— h N lf l J O O UJ Cl • •J X z z — <n (v d N o © d 9 o © d © o o do o d — 0 01 d CM DAOJMX*FIXL-XFIX«N.2>*SMLESCN*t>-SUMSL 00038800 CN <Ti o o © 9 a o o o © © © o © o o o o 44 AJ a © © © © na a a © o oo © o o o o © o o o o « © a o o o o e © o o e in <0 N © © © a a a © © o o o o o o o e p o o CO © © © n a o o o o © o o o o o 9 o o o e p p p o p o p 44 CO -I 9 © p p o 9 9 ♦ ♦ P p o © P p p p o p p p p p o © in 9 p o 9 ♦ P o o p p o p p N P ♦ o p o p p 9 P 9 o p p p p © o ♦ p o p p p p P p p o P o m AJ a 44 m 9 9 ♦ 9 o p P o p p O O p p P P P 9 p P p p p P P p P p p p © © p ♦ in 9 S>4 • 4 44 N •4 ♦ 9 9 9 9 9 9 P p P P p O o P o O o p o p P o O o p o o p P P P P P P P P P p P P P P © P P P P m AJ a 9 in 9 K © © O AJ AJ AJ AJ AJ AJ AJ AJ AJ a 9 9 9 ♦ 9 9 ♦ • 9 4 P 9 P P P O O P P O P O P O O © P P O P O P P 9 P P O P P 9 P P P P P P ■4 At a a a a 4 4 4 P P P P P O P P P P P a 4 p o p 4 9 P p P p O P P 9 P o P in 9 N © © O a *0 *> a a 4 4 4 4 4 4 4 P P P POP © O O o O P O o P o O O 4 K z 4 4 a U J •j z a B Z •a z o \ 1 1 1 1 A N • 140 in 4 j a z J 3 • a a a (V N © X i < < a a •j ■ 4 * a © • K © z m J z X 4 4< 4 4 4 4 » •4 X a A I a • 4 4 » s X z AI z z •J o 4 4 4 4 4 4 a X z X J O X o o o • 4 n u LB »• n U JN • a a 4 4 X • 4 • I z o • z A z X J « 4J 4 4 » © < < S i a J o o o P 4 * 4 4 m © X X a J 9 9 P z U z a z z U J 9 J « 4 4* mm 4 4 ■ 4 2 O o i j 1z X X ♦ X U Ja w 4 43 44 4 •a 4 4 • 4 I z IL j X J 4 4 4 *4 a 4# 4J 44a o 4 4a 4 4 a 4 X a o P o z X4 z z X J z • o X r n a a U J • • 1 ♦ 1 i z XU 1 4 4a 4 4 » < o o • o < j o ♦ + 1w a j fr- fc i z z 4* 4 4 * X A I ai X z s a X N a X U J X < z 9 9 o 4z z ♦ « ■ 4 *4 • 4 4 4X z • a • • 9 © • • X X4 z z 9 z o 4 4a • 44 4 4 4 44 4 • • z • wa 4 44 ♦ 4 X • X il 4 4 4 4 4 4 ■ 4 4 4 W a * 4 4 L » z z j A J X 1 o 1 Ha z z 4 4 4 o 4 a • • a X X n X X 9 J z n z a • z J o 4p 4 • • X a 4 4 Hz 44 4 44 a • tl o u p a a < ©X X z •a M z o 4 4 4 1 4 4 o z a z •J 4w 4 4 • N IL IL © Al IL IL < X 1 z X 4 o o a 3 4a 4 4a X 4 4X X 4 4 • X X z X X J Xa X a X X a a 0 U J4 4 n aj il IL p 4 4 < < a tl z 4 4 4 n fl 4 ♦ X < 1 4 4 id X X j X X n M Mu It n X X X H a j IL IL • 4 4 • o ti 4o < < o V < < X z z o 4 a • z a n z IL n z O n fl J a 4a 4♦ a * a X X 4 z a X a o x a o X a a k 7 Z X fr» X z X X X X N a z X « ■ a4 4 4 4 4Hn z 4 4 4 4< 4 4 it < < 4 z o n z o o Q 4 z 2 z 4 o z IL z IL a a w IL a u IL a 4 < < < o Z Z 3 II 3 IL IL IL n o z z o IL z z IL IL n O a X o X X “ X o 9 o •4 o ** X X Q •* X x o o o X X a ■ *9 X X 9 X X X • • 4 4 • P X in . a a 4J A JU . 4 X fr : o It o it • w -1 1i X X : o Mo i 9 u » 9 il i 4 4 4 4 4 4 4 4 4 4 O O O O O o O P 9 O o O O P O J 1 i 1 I P o 9 P 9 P o O O O m AJ a 4 in o in in in •4 z P 9 •4 a p a 9 s c» 4 4 •a — o a ©© 4 44 4 o © mm (U © -* a © 4 4 a X ii a z X a X J a z a X • z 4 4 a a • a • 4 4 4 4 2 N n 4 44 « 4 4 1 1 J • • A J z A z 2 A JN X 1 1 4 4 4 44 • * o 1 O4 4 4 44 4 44 4 4 < 1- 4 H X A J * X 2 t 4 X X < O < 4 O z 9 O< z z 9 X X K z X X z ♦ X X 1 1 4 44 4 P o o 1 r 4 4 • 9 4 4 •4 • 4 4 • • AI ♦ o L » 4 4 4 4 • • z U J 9 4■ 4 4 4 • 4 4 44 4 • © •m 4 4 4 a X X J 4 4♦ X 4 44 4 A J X U J4 4 • n •4 *j • z ■ IL IL 44 4 IL ♦ X X z 4 9 •4 IL 4 • X 4* 4 44 4 •4 4 4A JX u j a 4 Jn H A JX 4 n 3 ii X 0 II A ■ 4 4 4 ■ 4 • 4 X U Jz 2 2 X 4 4 z IL • z O z z It O IL 4 4Z 4 "t H -> X 4 n X X X 1 4O 44 4Q 4 44 o o z z o 4 O < IL U . X O < < V o IL IL < u Q “ •4 O 9 Q o z 9 ** X o CO o a ©o o -* A J CJ z O 4 4 AJ AJ A J 4 4 Ai a 4 4 AI SLC 214 2 1S 220 2 25 230 2 35 240 245 250 I 2 00044600 I F ( S M L E S I N + 1)#GT#DADJMN) O A O J M N * S M L E S < N 4 | > IFISMXSL#LT # D A D J M X ) D A D J M X*SMXSL 00044700 IF INCHK #GT* 0) GO TO 235 00044750 00044800 KSADJ30 KSADJ=KSADJ+I 00044900 D A D J (K S A O J )s D A D J M N A I K S A D J — I>*OELL 00045000 IFI D A D J (K S A D J )—D A D J M X ) 215.2 2 0 . 2 2 5 00045200 KA D J = K S A O J 00 0 4 5 3 0 0 00045400 GO TO 230 K A D J 3 KSADJ-I 00045500 XMND ^ X M I N 00045600 X MX0*XMAX 00045700 00045800 IF C XFIX(N#2)# G T •0) GO TO 235 TALA=sXMAXA+OAOJMN 00045900 GO TO 240 00046000 TALAaXMIN +DADJMX 00046100 I F (D<t• 1 > .GE.SMNSL) GO TO 245 00046200 MR I TECSYSOT #2 ) SMNSL.DCl.I) 00046300 STOP 00046400 IF(0A D J ( 1 )•GE#SMNSLI GO TO 250 00046500 MRITEC SYSOT #2 I S M N S L . D A D J 1 11 00046600 00046700 STOP RE TURN 00 0 46800 F O R M A T ( II0#FI0#0« 1 10.F10.0) 00046900 OFORMATIIH t » 2 9 X . 5 9 1 30X# 00047000 1 •* SPECIF TEO MIN I M U M SPAN L E N G T H F O R DECK DESIGN3 *# 00047100 2 F 3 # 0 * • FEET# **./.30X. 00047200 3 #* SPAN L E N G T H TO BE USED IN OPTI M I Z A T I O N P O L I C Y * * • 00047300 00047400 4 F 3 # 0 . * FEET# **#/#30X# •* NO DECK HAS O E E N D E S I G N E D FOR THIS L E N G T H # • • IAX• **•/ 3 0 X • 00047500 '* ADJUST S P E C I F I E D M I N # S P A N L E NGTH F O R DECK D E S I G N < S M N S L )•000*7600 ,t • •/30X • • • RESUB M I T JOB# « #43X • •* •/30X #59( • * • I ) 00047700 00047600 END DKOPT 6 000 C MIN to 20 30 C MIN 40 SO 60 62 64 65 70 2000 1000 SUBROUTINE OKOPT !SL,OKPR,NDK,MSGR> 0 IMENS ION DKPR(50'S) COMMON/DECK/ D K T B I 5 0 . 7 ) . I0KT82I2 5 * 2 1 .CNST.NOT COMMON/VALUE/ OELL o N S v N C O M M O N / 10/ S Y S I N * S Y S O T •W K F 1 *W K F 2 *NNBK DATA NSL/0/ INTEGER F I R S T •S Y S I N * S Y S O T •WKFI#WKF2 NSLaNSL+1 IF ( N S L . E U * 1. A N D . M S G R #E Q . 1)M R 1T E 1S Y S O T ,6000) FORMAT! IH1.20X. •SU80PTI M I Z I N G D E C K TABLES IN DKOPT*) NOTI=*NOT+l NSUB=*NDT * 1 IO KTH2INSL.1 )xNSUB NDST»0 FIRST^NSUB IMUM COST DECK R E G A R O L E S S OF R E A CTION JH* 1 DO 30 1*2*N0K IFI O K P R ( I.2 1 - O K P R ! J H . 2 ) )10.20.30 JH*I GO TO 30 IF I O K P R ! 1,1) « L E « D K P R ! J H . 1 I>GOTO 10 CONTINUE IMUM REACTION DECK R E G A R O L E S S OF COST JK*I DO 60 1=2*NDK IFIOKPR( 1 * 1 l - O K P R C J K . l ))40.50*60 JK*I GOT O 60 IFIOKPR( I*2)*LE»0KPR!JK.2)IGOTO 40 CONTINUE DO 70 l*l«NDK IFI I«EQ« J H ) GO TO 62 IF! I.EQ«JK> GO TO 64 IF!OKPRI 1*1)» L E a O K P R i J H • 1 )•A N D * D K P R ( I .2>. L E . O K P R !J K .2> >GOTO 65 GOTO 70 JHS=>NDT+1 GO TO 65 J K S = N D T ♦1 NOT=NDTM NDST*NOST*l D KTBINOT.l)*SL O K T B I N O T •2)=NDST D K T B I N O T •3)= D K P R ( I • 3 ) DKTBlNOT ,4 )*DKPR ( 1.4) 0 K T 8 ( N D T . 5 ) = D K P R < 1,5) DK T D I N O T • 6 ) * D K P R ! 1*1) O K T BINOT *7)= O K P R 11*2) CONTINUE IF1MSGR * E 0 « I ) W R ITE!SYSOT,20 0 0 ) J H , J K . J HS.JKS*NOST FORMAT! *0CALL TO OKOPT • *3X •• JH * • • 1 3 . 3 X ,*JK =• • 13 • 3X , *JHS «*• I 13* 3 X •* JKK I3.3X,*NDST 3*,I3) IF 1M S G R . E O . I >W R I T E ! S Y S O T , 1000)1l O K T B ! I •J ) •J * l * 7 ) • I*NDT1.NO T ) FORMAT!IX.7F10.2) IFINOST*LE* 3) GO TO 100 JH*JHS JK=*JKS I*F1RST 00047900 0 0048000 00046100 00046200 00046300 00046400 00048500 00046600 00046700 00048800 00048900 00049000 00049100 00049200 00049300 00049400 00049500 00049600 00049700 00049600 00049900 00050000 00050100 00050200 00050300 00050400 00050500 00050600 00050700 00050800 00050900 00051000 00051100 00051200 00051300 00051400 00051500 00051600 00051700 00051800 00051900 00052000 00052100 00052200 00052300 00052400 00052500 00052600 00052700 00052600 00052900 00053000 00053100 00053200 00053300 00053400 00053500 00053600 Q0OS3700 IT) ON o o oo 0© n n 0 0 Oo o o oo 0 o © * 0 o o o o oo o o oo o m ( 4tA < < * ♦ * 0 00 0 o OO© o © © © o Oo o o o 0 « 0 o o o © 0 o oo o 0 N 0 « ♦ 0 0 0 © o o o oo o oo oo o o ©o ©o « 0 0 0 0 0 o© o © o o o o o © © © o (4 n 00 00 o o o o o o e o ♦ 0 0 o o o o o 0 0 0 o o o o o 0 0 0 o o o o o o oo o *• CO © 0 0 0 0 00 o O' o o o o o o o 0 0 o oo o o ■ ■N 0 0 0 0 o© © o o o o o o o o o 0 0 o o m oo © o < 0 0 o o © o © 0 0 0 o © o o 0 0 0 o o © o 0 0 o o N o o ® 0 0 o o o o © 0 0 o o © o o o © o o o o mm (4 n N N N N 00 0 0 oo © © o© o o o o o o o o o o o o z or © o z x 0 n z z o o ii N x X o z k- 95 * o TO o • N 0 UJ O K Z V) • UJ •> • ~*x o m o • o in n— 0 X0 X •• • • X* -* fl O X o • o • ♦ X • CO IF(l.EQ.JH.OR.I.EO.JK) X a o o v) a ► (A O ~ Z 0 *» • o • 0 0 z z • z X O K X o o o o o 0 > o H Z o• z * ~ X O 0 o • o • 0 0 •0 »• O & 0O >0 0 0 > O o 0 « 0 J 0 0 ~ a Nn#n«Mii • uj *• UJ o O U J o o o *■ K o XXX X X X ~ X X ^ I * Ul tt» 0 ■» w - H o * * < - J XXX x x x ff n n o a z a ~ -•— B I X O K U O O Z *m > m B — b a S3 O O 0 9 0 o b j o on " > * ■ > A ^ A o^ 0 N X - u j H k W t Z • • « H XXX X X X-* — MM X K— «I*-N• o a« M M • W •o O O O •XX • z o o o • J w mm 1 «« O UJ O UJ II It It ( i ti nuoj ■•»••> . OZ O0 U ZO OZ 0J o o o h* UJ • • (4 n * 0 <0 N • O O K K • •0 1 • •• • •z t o • • • k 0 X o o a ~ X • • • ff UJ UJ lit ff w UJ UJ *+ •M O H XXX X X X o • • J 0 * J o a o 0 UJ 0 z Q J N Z It n a • UJ n z (A < •» ♦ 0 « 0 X X *■* • 0 < #• •#« • o a mmmh» H II x z -• 0 s m ) I •I> Xb ~z az fl)»• »O- W83 K0 HO IS-3 WZ 9X* X ♦x ^X-X*X- a+*^>*^ ~- ^HX3K O 0 0 k 0 K «- a n UJ UJ II k k o o k O H k n n x u. o XXX Q nknkoujz x Q xQ xM kM k• u. • xR *k*k- o “ *■ z z - k x k * > - — *--auj "> x •* u. o o o o © o V o o 196 O O o ca UJ £ u z « x o z <0 cn u o N IL X < UJ a H to z 9 O O J J < CL o z o M CO a < CO < & a o CA a <a vA 2 u o <t o (L •X «« • * X * o x •o ©o O 2 O K X z > « J • <A N • © o a o • •o OOf z z o u. z X *X (A << •> - (A K H •2 -> z VO u. • n • X u z X UJ u • co O X ^ z • VO ♦ o o N • •J • CO o o O2 w * J o z CA X UJ < < in • > o o v ~ -J co a N a co © (A O < < a u. * • < o O J • • >2 J- UJ z < (A • X o — X - ffi o to o O X f f l z < \ < < O cn V > a It o < n •~ CL 3 k a < UJ S UJ i X *- • o o h- J X 3 □ 2 CD •3 (A U J 1X <•<0c «*• A A -N ~ o lA ♦ •^ X M o ~ 2* O u o << ♦ «- CA <<< o o o < << ♦ o o o X - o -• 2 UJ UJ UJ fJ N • • <0 * m • • • — (U XXX IA - 2 o o o O c H •2 2 2 < < O * ~ «■#«■»«• UJ NO J< O2 •- a # * • Uo > K -o n 0 0 2S s\N2« z z Z UJ - cr - O Q 3 UJ UJ z < < o o o o © O Z o o X z Z UJ H- O O K K 2 • • UJ z © h K Z z z X »» o* oo ion -u. a o o z 3 3 z o V u u ~ M a o V) O - u • UJ o Z 2 CM < 2 Z * Z (A O (A 0 3 *• ^ O Z X X < K J J z J J o << u o o « o tn * «u ♦ J UJ <0 • VO VO u X ~ o O — n ii 2 © O~ whhXIU O O X X O 3 O O 2 Z Z a n n ►. k 3 O R U X lO Z W O ^ J U J 2 U O IJ Z lA c A C A Z O U X U J (A m o « TABOPI S U B R OUTINE TABOPI S U B R O U T I N E TO OPTIMIZE OVER THE DECK TYPES C SETUP SUMMARY TABLE I NTEGER*2 TA0A*TAB8 C O M M O N / T A 8 L E S / T A 8 A I 600* 3 ) • TABBI6000*61 *A C S T ( 6 0 0 ) *BCST(6000) 1 *R0WA*R0WB*NRTA88* LSTROW . M S G R C O M M O N / V A L U E / DELL . N S . N INTEGER R O W A •ROWB#ROW*FIRST RUW*0 FIRST*! 1*2 70 1FITABBII*5>*NE*1 ) GO TO 65 75 ROtfsROW+l L A S T *1— 1 LI T = F I R S T DO 80 J*F1RST«LAST IFCBCSTIJI «LT•BCSTILITI I LiT*J 80 CONTINUE DO 82 K K * I •6 T A B B 1R O W * K K I * TAUBILIT«KKI 62 B C S T I R O W )aBCSTlLITI FIRST*LAST+1 as 1*1*1 IFCI-ROW8) 70*90*100 IF IT ABB I I*5)* N E * 1 I GO TO 95 90 JJal-l 00 92 J*JJ*R0W8 R OW=ROW*l OO 91 K K * 1*6 91 T A B O 1R O W •K K )*TABB|J* KK| BCST(ROW1»BCSTI J) 92 CONTINUE GO TO 100 95 100 105 ItO 1*1*1 G O TO 75 ROWB*ROV IF (N * N £ * 1) GO TO 110 00 105 1*1* ROWO A C S T 1 I ) * B C S T ( 1) OO 105 J * t •3 TABAI I*J)=>TABB(I*J) ROwAsROWB RETURN END 00060000 00060100 00060200 00060300 00060400 00060500 00060600 00060700 00060800 00060900 00061000 00061100 00061200 00061300 00061400 00061500 00061600 00061700 00061800 00061900 00062000 00062100 00062200 00062300 00062400 00062500 00062600 00062700 00062800 00062900 00063000 00063100 00063200 00063300 00063400 00063500 00063600 0006J700 00063800 00063900 00064000 00064100 00064200 00 G\ 00064300 •o o o o o o o o o o >o o o o o o o o o o 1« © © N © © o m* CM n '♦ ♦ * * * in © © © ' « © <0 © © © © © © © 'o o o o o o o o o o 'o o o o o o o o o o »o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o e o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o « © <0 N © o o •« CM ♦ in© K © o o aa CM n ♦ © © N © o o mm 0J n ♦ © © s © o o mm CM © © © © N © fr o © © © il © © © © © © © © © © © © N K N N K N N N N N <0 © © © © © © © © © 0* f r fr fr fr 0* fr fr fr fr o 0 « © © <0 « © © © <0 © © © © © © © © © © © © © © © © © © © © © © © © © © © © © © © © © © © © N o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o © o o o o -I 3 © © o UJ x UJ X (A U o UJ x B (A X %J (A •a X w * •> C J O O < V) •X (A « UJ (L x x >- a u. a uj * SUBROUTINE TAB0P2 >© O H (A 0*0 • OB o Q h<* c fr- x x n zoo o o UJ < UJ UJ z - < UJ UJ X * -H f r** X 3 Z z o O UJ «* - u O O • o u o o z mm mm o CM o o o B O a o mrn K mm H a m* O Z CM a < 3 < (A *- o • mrn • •o c Z B - X N * ^ Z 03 a (A a o < • UJ o *• B J oo J m o o BOO X < < UJ ►» ^ •• < OB j (A o o o o © ^J .• X K • a fr* O o o o b © a O O 03 o ** • u o x < < N UJ < •OB - I t * < < o x X o o a J < Z J < < a z CM © B • O z < u z X o fr< © a* • o o o o o < hm • UJ J • a* B © • m3 ♦ B CM K a o mm w a UJ • B a o o CM ♦ < fra • a UJ • o ♦ •• CM • UJ N B mm © a X z• H o o • 1 11 mm B © a s c mm mm a mm 9 O « “ ♦ — n '< 1© © < UJ 1 f r » f t K CM n u uiih 1 B B UJ CM mm «• B B •* •- -* rg V ■ o x *- fl u. i- IL n X a © o fr* IL ""UJ z z o •* •• a o •* < © J o u < ♦ u © z n UJ -> H UJ © »• " V z «• 1 *m o © © a< © X J z z • UJ ♦ B B K mm mm © .J a • s..x o u u u z s 11 o ♦ •> © 3 UJ II a z © (1 N a- z © w* X >t» © n R © z mm u H z a © o u. X < o *- a n u z J o •• o n © CM B X UJ • •> -> n N K mm mm mm CM < X K © L* © u a— 9 • »© -J u •o UJ X mm mm •> • •a H mm mm bm mm mm L» © V 9 o o < II rnm © • •» m •> 3 II II o mm n • ■A B o © fl 3 o o © u Z o mm X X © © o o a* a *• n 11 o © n tl m t- rj 9 CM © c u •a z B o IL a »- o o a u o < o u X o o o L* o o — o «» UJ ♦ CM B H a - mm X UJ B X o o m J © © •) • CM o M o >- amm mb CM M B X UJ • B L* © u © w o Q «« H o < o II A o mr• II n A II • o B o o B o X mm aa •© aa n • aa aa o o © < • »• mm u a a I I n 9 fl o • B a a H -3 B o n o UJ o aa aa• o X c X X — J X mm • I t o o a a fl X mm © mm ■ 1 f- 9 aa♦ aa o © fra © < < n 1 mm B CM B © 9 © 9 B o o o 9 < II a o o u o < o o * • X o o fra ** ** X o < o 1- X X 9 n •> © ■a ♦ B B X B o <0 TA60P2 RETURN ENO 00070100 00070200 200 TAB0P3 s 20 25 35 40 45 SO 55 60 65 70 75 SUBROUTINE TA60P3 INTEGER42 TABA.TABB*WORK INTEGER ROWA* ROWB*PERCNT COMMON/TABLES/ TABA(600.3)•TABB<6000»6).ACSTC600>•BCSTC6000) 1 *ROWA *ROWB «NRTABB •i.STROW* MSGR COHMON/OPTIO/ PERCNTC20)•NOB*PCINC•PCMAX DIMENSION W0RKC6) NLAS»ROWB-l OO 25 KI^I.NLAS K2»R0WB-K| 00 20 I»1*K2 JTES=ROWU~tI-t> 1FC0CSTCJTES).GE«BCSTC JTES-'I ) ) GO TO 20 WORKlsQCSTCJTES-tI BCSTCJTES-1>=BCSTCJTESl 8CST (J TES )3 WORK 1 OO 5 J=I«6 WORKCJ )*TABBCJTES-1•JI TAUBCJTES-1•J)=TABB<JTES.J) TABBIJTES*J »*WORKIJ) CONTINUE CONTINUE N0B*1 DO 35 l*l«ROttB IFCBCSTCll«LT«OCSTCt+l>)GO TO 40 N0B=N0BA1 IF IPC INC aEQ*0*IG0T045 IFIPCMAX«LT #PCINCIPCMAX s PCINC GOT050 IF CPCMAX«EQ*0»IGO TO 7S PCINCsPCMAX RATaPCMAX/PCINC NINC*RAT CKNI s NINC IF tCKNI *L.T*RAT )N INC*N 1N C+1 00651^1•NINC PERCNT1I)*0* CHECKsBCSTI 1)•(1•♦(1 * IPC INC/100*) )) NOBtsNOBM 0055JsNOB1*ROWB IFC8CSTCJ)*GT.CHECK)GO TO 60 PERCNTCI)3PERCNTCI)♦! GO TO 65 CONTINUE CONTINUE IF(NINC«LT«2IG0T075 NINCtsNINC-1 OO 7013 1«NINC1 NINCBsNINC+l-I PERCNT CN INCH )sPERCNT (NINCB>—PERCNTCNINCB-1 > RETURN ENO 00070300 00070400 00070500 00070600 00070700 00070800 00070900 00071000 00071100 00071200 00071300 00071400 0007IS00 00071600 00071700 00071000 00071900 00072000 00072100 00072200 00072300 00072400 00072500 00072600 00072700 00072800 00072900 00073000 00073100 00073200 00073300 00073400 00073500 00073600 00073700 00073000 00073900 00074000 00074100 000 74200 00074300 00074400 00074500 00074600 00074700 00074600 00074900 00075000 00075100 00075200 00075300 00075400 N O m 9* - o *• ~ ~ 9 ft z z z p. - 2 - *• f «■• ft 2 K !S i a o ro ft ti o 9 a m ti 9 * nn i/ii/in 2 atoft Z C h a O C-»c r -i z 1 -* c - r z ~ o a 2 h m — ^ z z tr o 9 ftz m z z m9 1 r x 9 - 4 0 9 9 It -» x O 9 f x u 1 O U i O 9 m b —U O - x 9m 0 o H i n o o o u z m m z z ft z ro c Z ~ - z H - It c o ~ z c z a - - m -• f t « © V a ft Z ft n 9 X s 9 1 «M X v» p m o z m r s x r o • m f - o t mt• - Tl m x z m i Tl X r f tf mt f m o>o ro z < r♦ o o♦ zo • m* * ♦ o < S (A m >■» »• ♦ ♦ m u — H *» •• • v> X 9 U H o — (A N •• ft z > ft • » f t CD 1 o Z o o O Z - z < a fto >O (A Z r 9 b r Z CH • ft x X ft O •< Z O 9 - I 1 X r w • f >> o o t~tO <® CD x o f o Tl MTOSK o a «< ^ > > CD II •« O • O • ** f t(A O O 9 ft X 1-00 • •so ft Z CD • X Tl • U ti a z - - r 9 • c a • X 1 H ft ~ > > X — O CD H O O D rg o • *• • - r ft Z • (A O a n V) o ft t f Z Z 1 o CD r 9 o X o o • r * ft X • — • >t O•f ft tf -» z • O 9 (A — 1 u II f t •4 3! 9 9 O ft o o o o N o o o o o o o o o o o o o o o N N N a N rg o a «g o o o o o o o o o o o o a ••a 4 o o o o o o o o o o o o o o o M N N rg o o o o o o o o o o s ftft» u Z f t ff l ft f t o o 9 0 ft m z o 0+ o o o o o o o o o o o o o o o «g N S o a o o o o o o o f t 1 ft o o o o o o o o o o o o o o o «g N s ft rg a N o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o N o o o s «tf gstftf «* tf tftft4 ftftf m O ftftftf ftf tftt f tf t* u OO O O o O o ho O 202 © o n 0 N O O O O oOO Oo OO « in 9 s 0 9 9 0 N N N N O OOO o O OO o O O O ©© ©o e o o oo o •N 0 © o « 0 0 © © © N N N, N N O oo© © O oo©© O o o o O © O o o O© n * © © © N N N O O O O o O O o o o o o © oo © o © oo o oo 9 N 0 © o ■* N © © © © oo o s N N s 0 o0 o o oo oo © o© oo o o o o o © © o o © oo o© o© o© © o ©o n ♦ m 0 N 0 o o o o o o 9 0 0 0 0 0 o o© o oo o o o o o e ©o o o o © O o o a a o u O (/) 9 0 » o z UJ H </) U o ~ g 2 R a o oo V) — z - •^ o • J o o x a j o K z z V) • z o J ~ • * •O N O o o il a o- x • < ~ » fg k x • b. a j - * Z 0 IL » * tfl o o a • IL * • 0 Z * - a o • * • u. o O -* K X 9 a © o » • o tn • < < ~ >» h 0 <0 < s »a■»</*> «o * * «I-oa•oa z > * •</) W • o < s z (fl ♦ O0U ) > z a < u N V)** h j Id 0 UJ 0 W) N > Z N< ■* o Irt - * H v n a ►•as O 3 UJ 2 oo o a uj z 0^2 0 2 0 V) •« g 2 2 o a Z Z z z a o gg O o K V) g o V) U o 9 • © N — N u UJ in z * j o j z g w • v )g z UJ -• 1 H O ? o • o o o < 0 O g U J z X J 0 J g x o uj j z - m - iom * ♦ zz -• o o ♦ O ^• I ^ x - «• X UJ z o z *- u O X © J u. u. J • UJ z O U J O I L U - il j in o x x 0 X - UJ «• •• ffX 0 UJ r o z o - z * * Z -I R •• n z * 2 z H t|ff o ^ n r il n n II s >- n O UJ s o x z o ^ - o o X 2 a o »- or c o u o *• M Z J ~ Z * Z « J ~ *- z h » < U l b O z (A Ul IDIL U UJ M 111 0 IL (/) UJ O l / I O l l l V I U J Z - - - 2 - - 2 U Zo - aa 2 a w *- X X J u >0 '2 Z o (U cn o CM o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o -c u m *© © N © o o *« e M » n 0*4-«.*M««.».*MM«.rUCUC\JN O O S O O O O 0 Q O O O O O O o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o oo O o o o oo o O +© © N © oO CM CM CM CM CM CM n © © © © ©Q© o oo Oo O o o oo oo Oo o o o o oO o o o n © o o o w» oo © oo o )♦ CM F n m © ©© oo o oo o oo o o o © © © o o o o o © © o o o o o o o N © F> © © oo o o oo oo oo oo »n « ©Q oo oo o o oo e o oo «• CM n ♦♦ « Q «© oo o ooo ooo o o ♦ ♦ © o o o o o in « © o o o o o © ♦ « o o o o o K ♦ © o o o o o © < © o o o o o o ♦ © o o o o o o © © o o o o o © © o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o «• N n 4 i A ^ s 0 9 O « * N n « i / ) « o © © CO 0 o o o o o o © o o o o © © © 0 CO 0 o o o o o o o o o © © © © © © © © © CO CD CO CO CO 0 0 0 CO o o o o o o o o o o o o o o o o o o o o o o o o o o o CM o o © X © © w z X z < \ J O X x • — 1N3Q I X z J a • o o ffl A • Z O • Z © X N 0 \ cn x (11 Z X J • ffl «« • il o a or SC O UJ B w a • X * • UJ X o ~ a z cn o • < > 01 N -I © ~ x h a z • Z • CL Ul © - ~ I o il) m o n m UJ > cm s X cn *- <n SNIll Ui Z CM O Z H M * - O X \ 3 UJ z cn u. o o o z a uj X UJ < e h X X *• 3 Z o -» < cn — u o o >-ff in m UJ x o tu il J < X • CM IL X il SC 31 • ■« N -J a> UJ VI < & cn • UJ u < cn cn UJ CD 0> cn w x “i • in a x in B IL X V • *• o cm cn — >■ h cn z • o z x •• il j < u M O o J o o in m UJ X o o — a UJ Q. o © X z o J o < H X Z J o n -* «• —o • CMUJ <n m * • • > © a z ~ tn — cn • >©•# cn> cn a « to m uj o X UJ~ UJ m o z »- o x < < -L O z o J 2 UJ IL H - o 0 > C “ *• O ( D ♦ O © il «j < X i n ♦ ■* o H U. © n h - CM O UJ u < a cn o IL IL Ul UJ o o u u o CM < in ~ •© © • K o in ia o * o © O’ © O uj o > in •o IL Z UJ • •u o • •o • ©•n• < • ~ o V u n • • o • • n o • UJ •- x O (L UJ ~ o in > m uj UJ 3 UJ a ffl ^ ~ ffl • • "J UJ u • < X • o O • R X U UJ • • o o • Ub o • <u • •< • •M O CD • j ■* n • •j u < • • • x • X « • i n x O O - O X • ~ ~ a u H> • CD ~ • “> cn x © ffl • 9 -> • M W N © ffl • • w •o • < • • M • N x • X < -* -* X o < ~ i •• < CM N ffl ^ N ffl cn s o M ^ ffl © ft IL -* z ■* © - z *n - z -* © «• Z © in • © z © • •z Z 0 • •z - •z © • •z * • >- »- • • w • • h» h- • UJ • I • • h» • z • o • CM z o a cm — uj uj z o o CM z O O CM Z O cm Z O O cm z z: O < il — m cn il o m • - cn cn IL - cn in il m cn il «• in in il • M1©I • j o i n > > x in > > X in > x in > > x in © ' >: x in > ► x 9 > in m b o < uj > cn m 9 > in m b > cn b > in v) 9 uj > © cn w cn uj il x m w cn o © • <»•>(/)<• • M W uj u UJ M UJ UJ UJ W uj uj M UJ UJ UJ z w uj UJ — UJ UJ UJ ► o k w K - — tl IL O ^ »> »- o ^ H t- o k k o w h ^ - O I M < — < — M < • n — x m < < M —< x uj a a or in il - IL UJ a s K UJ a ct a uj a a uj a a c IL UJ ! 9 a 9 b b z ~ il - a B X 9 a B B B a b b a B B B •* a < ©X• —UXJ «X ©» IL X O K a il -• « O ©- z - © o z k • o o z o cn cn — cn ► > cn in > m ~ in u » u w Ui i - x ►- o M Q M < a z C C UJ B Z 9 a - n~ ou u k u. < «j a o < cno i o o «■ o s cn cn © uj X o UJ «j o •z in m uj • o u z • - Q • • A • in u uj • >- o «- •© O ffl • • u< ffl • < ~ N ~ © • X ffl - Z •z O cm © IL > X © B UJ UJ ru pp to CA pp © a o X x x m o a a a > o u H H M o m m m W © x (A CA < n x < < (A Pa It Tl © CA M O O 2 m • • «4 © z z • • w a z U •4 ffl M © > X • • 2 u n © • *• • a o z z CA A <4 • « m • (A > -4 > • Tl • • > > -4 > • > > • © to a m > a ** © x © «< x -< © ■n © to o z • z • z pa © > • X X a a pa H -t m m • © > © • © n >•• • to pa o to A O © • • on A • • • m ti o • • Tl o X X o a a pa pa -4 to mm m m mm U X © M * < U Tl © to o • • -4 X z • z © © N * w • pp U ap a a A X X a m o a a m pa pa > > •4 o o H o m m pa mm mm © © < to X © < X < © © © ■n © to o z z • •4 • • pa z • © z pa u ap D s > X w • X • > © © • • © A X • m « Tl o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o >•• AO © • • A • O O O X X o a a «• aa to o m ffl o aa aa X © X X © pa X < pa Tl II Tl © to z •p to o • •4 • • • Z • © X z • mm z to z o A X o O a pa to -4 H pp o m mm mm mm pa i m • to aa o o N o to o o to pp o • X to •* X a aa a* A aa © < © o -4 a m > o aa © N to © > mm X w • • • X © la © • • A © >•• A O o• • • o m A • • • ffl Tl o • • • H A a *4 • X X mm Mi • (4r • ap X X • r • X z Tl N r ♦ m 1 X to o © to to o O © © X A X A a X a o a o m a pa mm > aa H H •H H o •4 ffl o m o pa f n mm © Pa © m © pa < X < <C < to © X © o © o pa Tl o o © z to -4 •4 • • • • • to ■a z N o u z pp -4 aP 6 to mm ap X X ap • • • Ca r to X a •a H fn pa © < © o • © X %p © z -4 W a* m • * © © ap to o © to to O o to pp to o u A X A X X A X X A A O a O a a o a a O O »a pa pa ■■ pa H H mi H -4 M •4 •4 •4 o ff lQ ff lr n o f flff lO Q pa p* •a N © to X © to X © »p X < p* X < to to O Tl Tl ® © © © o o © © to o to © Q to O • • •4 • a • z a z • to to © z S z © o O © O © o u © ap X *m X ap ap ap • • • • c. im to to © © ap ap © © •4 H z pa C. ap z ap to pp o © o o •a o O pp a o X X a tj m o a a n i ■a pp > > o to ■4 H o »p m m aa © © © X © < < © c. X •< © pa a Tl © aa z pp to o z • • • -4 • to to z • to © <• Z to to ap ap © U ap ap © X aa • C. • A z to • > O •4 pa to > • ap • z M C o ap C z • pa • z o ■4 • © z -4 • m o • > n • Z • A O X pa o a Tl * aa -4 • © ffl z o pa o © •4 • aa a © Tl am o *p • a4 X z • ap © © A © Q ap •4 o to o o A « A F.O A • X 2 © to 10ENT • X X a o X a a m o a aa > -4 •4 O to H m m pa pp n © © p* (A z < c x CA < © CA < CA m X 11 © u © o to o z z • • H • z • © 2 • u •a pp Tl z w © > u ap z * • > D n • © • z © a A O > z o -4 pi to pp w o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O 44O4O*O(D0tt0BSftQ)9(DSS& © © Q B 0 O 0 0 B O 0 0 Q 0 B 9 9 0 9 0 ooooooooooooooooooo 00 09 00 0 N S N S N S S ^ N S 0 0 0 > U I U » O O O S M J I » U N » * O O O S O i/i » u m » o <o 9 n 0( h » u n » o o b s N N N I» M * » » » » , *, " » * * > ' » " * 0 0 0 0 o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o 4> IDENT WRtTECSYSOT,17)A.B.C.O.E.F.G.H 300 WRITE!WKF2‘NNBK.6> A,Q,C,D,E.F.G.H 00 350 I»I.NSTA READI SYS IN*6 1 A,B,C WRITECSYSOT,I7)A.B.C 350 WRITEIWKF2*NNBK.6) A.B.C REAOC SYSIN,2 2 )NBO WRITE!SYSOT.75INB0 WRITE!WKF2*NNBK.22)NBO OO 400 1=1.NBO READ!SYS IN,4 3 )A,B.C.D.K.IYCJ).XIJ),ZIJ). J»i*K ) WRITE!SYSOT.44)A.B.C.O.K.|VtJ),X|J|. Z!J)•J*l,K) 400 WRI TEC WKF 2 *NNBK.45)A.B.C.D.K .CY!J),X|J)»ZIJ).J3 1*K) NNBK=I FINOIWKF2 *NNBK) RETURN 1 OFORMATIIHI.34X.40C1H * )•/•3SX»1H».30 X .1H * ./• 1 35X.1H4.6X.26HBRI0GE OPTIMIZATION SYSTEM.6X.IH*./. 2 35X.IH*J6X.1H*/35X.IH*,4X.‘DEPARTMENT OF CIVIL ENGINEERING •• 3 /3SX.IH* *38X,1H4/35X.IH* »BX•‘COLLEGE OF ENGINEERING*,8X• IH*/ 4 *35X.IH*.30X.1H4/3SX.IH* *6X.*LOUISI ANA STATE UN IVERS ITY••6X * IH*/ 5 3SX.1H*,30X.1H4/35X.4011H * >./.2I////✓>.35X.40IIH*)/3SX.40(IH*) ) 2 FORMATC80AI) 3 FORMAT!/120AI) FORMATC 2 C/• 35X •40 CI H * ) )) 6 8 9 13 14 17 22 23 31 32 43 44 45 24 25 27 47 60 61 62 63 64 65 66 67 68 69 70 71 OFORMATI1H1.34X.' THE FOLL O W I N G IS THE OAT A F O R T HIS RUN** 1 /3SX.40I1H*)/35X.40C1H*)> F O R M A T I 8 F 10*3) F O R M A T ! A 3 . 7 X . 2 I 1 0 . 2 F 10.3.2110) F O R M A T ! 1 X . A 3 . 7 X . 2 I 1 0 . 2 F 10*2.2110) F O R M A T ! 4 I10.2F10*3) F O R M A T ! 1X .4 110*2F10*2) FORMAT!1X.6F10.2) FORMAT!II0.F10.3*I10*F10*3) FORMAT!IX,I 10.F1 0 . 2 . I10.F10.2) F O R M A T ! 2 I 10.F 10.3) F O R M A T ! 1 X . 2 I 10.F l 0*2) FORMAT I 4 F 10*3.110/ 1 15F5.2)) FORMAT!1X.3F10.3.F5.2.IS/I1X.ISF5.2)) F O R M A T C 4 F 10*3.I5/C6F10*3)) F O R M A T I L 10) FORMAT!IX,L10) F O R M A T ! 1 X . 3 I 10) FORMAT!IX. 110.* TYPES OF BENT WITH FOLLOWING INFORMATION*) TLB* FORMAT I 7 X . *BBS1 BBS2 EBS1 EBS2 4X . SMXSL SMNSL OELL*) NSM1N NSMAX PCINC PCMAX** FORMAT16X.*FIXEO 1 3X.• INOES MSGR*) FORMAT!10X.‘MATERIAL UNIT COSTS*) FORMAT!10X.*OATA FOR DECK COMPONENTS*) FORMAT!10X.‘UNIT COSTS OF GIRDERS*) FORMAT!10X.‘EXTREME ENO SPANS INFORMATION*) FORMAT!I0X.‘FIXED SPAN INFORMATION*) FORMAT!10X.*DATA FOR PILE BENTS*) FORMAT!1OX.‘OATA FOR COLUMN BENTS*) FORMAT!10X.‘NO PILE BENT INFORMATION*) FORMAT!10X.*NO COLUMN BENT INFORMATION*) FORMAT!10X.*PILE AND CAP INFORMATION FOR PILE BENTS*) 00092500 00092600 00092700 00092800 00092900 00093000 00093100 00093200 00093300 00093400 00093500 00093600 00093700 00093800 00093900 00094000 00094100 00094200 00094300 00094400 00094500 00094600 00094700 00094800 00094900 00095000 00095100 00095200 00095300 00095400 00095500 00095600 00095700 00095800 00095900 00096000 00096100 00096200 00096300 00096400 00096500 00096600 00096700 00096800 00096900 00097000 00097100 00097200 00097300 00097400 00097500 00097600 00097700 00097800 00097900 00098000 00098100 00098200 206 IOENT 72 73 74 75 52 FORMAT!10X.-PILE INFORMATION FOR FOOTING IN COLUMN BENTS*) FORMAT!tOX.•FOOTING INFORMATION*) FORMAT!10X.•VERTICAL. CURVE AND GROUND PROFILE INFORMATION*) FORMAT!IX,I 10.• SOIL BORINGS WITH FOLLOWING INFORMATION*) FORMAT!*I THE FOLLOWING IS DATA FOR THIS RUN*) END 00098300 00098400 00098500 00098600 00098700 00098800 r- o 00098900 CM o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o e o o e o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o ©©©©©©©©©©OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o c m u. ~ SUBROUTINE O U T P U T ( B B S 1 . 8 8 S 2 . B O S . UCS.UCC.USPP.ROHV.GUTT> X O 3 O •o ^ « Q 00 < F U V) UJ u V•)ff l • u — o • >0 uj C Ao 3 *-* F o F a c a2 o 3 • c a :X •u c'z ffl < (AI F o ~ ■Z '< a o >u _: z • • 0*0 < o a -* a * o FC M• oo C A* Ua A a o jm z C z < X f f l z z • X C M M C L . X X • 3 X << ffl • J 3 ».K ffl C • A N ■* F X 2 0 * F — ' C A UJ C M (L • w X (A • ; 3 f f ln « C A ♦ X < « C AO I F J • F J AO J s F UJ C • K C AUJ a n. < J • > M ffl C AO C AJ c A J < > < f J J C A F C AF < UJ UJ X < F N C A X OZ C A A < U UJ UJ C F f C A f lN f j C A A uj a NC X UJ OM X X » F • C A UJ 00 C A z z s UJ - fflX CMu 2 UJ • ♦ • x o a z o z o n z • a u n > o z • •>01 z ~ • • a cm a < UJ UJ z o o o UJ UJ z F I- X z z a - u z a s a J < > s z o z z o C Ju s z < a X s z o z z o 00 a M s • •N Z M • M o z > It < s J o • M o u s < z 00 o Z o O z f < < z XF F o o < < o o u • 3 • X* X X mm *m m ti• n 00 h z zz z z < o JaJfflJfflJffl C A CM Z CM • o ca w x - - - - F U JC M 0 X 0 O - F o J o X u • z o • o a z n A o • II C C AC A Z z u. u. •• • » *0 am 00 C A << < < o V n • m (L o o cm a ~ < a C A Z a «z < < a •a a C A zC AC A zZ Z Z • II • • -» f o 0 2 0 «• o ~ ♦ z~ - o - - - - a C A Z • z z z H M • X z < J u C9 • UJ X a 00 00 ffl CO • CM z z CM o H o O W >0 z 2 • CA O a z A o in o o z • X w »- < F Z 2 a C M—■ rj o o — u z C A •C M• • © © © © I © o r> © a am • 00 3 • • • » W F • F • UJ 1 F F F F I M o ♦ Lz o o CA H -* z z u F & • o • © < < • t2 o o OOI z O o z UJ O O ♦ I 0 M 00 z CA «• CA 3 3 F F C A C AC A C AC AC AC A4 < CA 0 a a 00 > ♦ F O O CA Z U J> U J • C A O C A > f : «• a >* • o 0 o u ► > u ♦ 0 0 • a 2 H CA U CA 2 2 J F ZC MZ o c AC AC AC AI ♦ CA CA UJ 0 z H XC AX © (fl « v - « O O Z n ti ♦ u z z w -1♦ © z w a w F 1 U J FU J Z * II UJ z UJ <A O 3 • II Z O Z R z II UJ • z w« o a CM u X AZ < <F < < a. ti X 2 »- Z < < - C fl w z z 1 z o a ti n UJ it L* J ♦ O h» n 2 u z M u * • II 2 > a - «»- « a a u z «-a. a . a a z a ■■ w II z it ul ca sa o ca ca s a z CA 2 IL z II o UL O o a 2 a 2 00a n :a x z - * - z z z z - z z © z z * * z z o z Z 3 o a Xz z 3z 3 o M o f f ii lA — O cy C M C M n « C M CM cn C M 00 o o o N © o viflinv>viv>ininviuivi«w<o o o o o o o o o o o o o o o o o o o o o o o ooooooo o o o o o o o o ©ooo©oo o o © o o o o o © * o — © © N N o e o O o o o o o e o o o o Of F) ♦ © © N N s N O o o o o — — o o o o O o o o o o o o o o o o o o o e o o N N O m o o © s o O o O © o o o o o o © o K © © O o o o o o o o e o o O o Of F> ♦ © © © © « © © o © o o o — o o N © o © © © o o o © © o © o o © o o © o o © © O — 01 PI in © © © © © © © © © © o o o o © © o o o m *• — o o o o o o O O o © o o o © O O N © © © — 0J n « © © © o © © o o o © o — •a aa aa aa aa •a aa mm — aa O e o © o o o © © o o o o o o o © o © © o o © o © o o o e o o o o o o o o o o o o o o o o o o o o © O o o UJ »• < a * UJ z U l o o a X U ♦ X < S3 o z 03 o a a X o s z aa o K X o m • X o a «* o o o a 9 O K < ♦ aa aa • I Of • © z • J i / i • * • aa O F) •o X © o — • a aa X X o 0 X 0 oa a *• o < © a © ♦ j j n © © • X _ j 0 UJ o i 0 z •a aa F> — © aa ♦ UJ F> © • in © • • • X w a a 9 * ►* 1* o — Of a or o o a © 0 z z in i/i«H — »- a a • a > UJ > © 0 X X 0 0 © 9 © 0 Z — ♦ 0 o O »- fc- w z a a 0 < — — X X UJ — UJ <1 ♦ © X )- II II o o w H ►» © O © o II o 9 II II • a z — 0 n a J UJ or © © a o s 0 J o fi 0 in z z ■* * u 9 aa © o — — © J • Of ♦ o 0 < * S z aa U an o « ft < © Z 0 aa * • X o a © aa • •J a ♦ 0 X © © 0 o J J o < a UJ UJ K H II ii IL J a O J B* © o © © Of ♦ — 1 a* © • X o a aa 0 0 < H♦ — aa • aa u Uj •0 s O o H • Z 0 n • 0 < © o 0 o < O © o © ♦ j& o aa © o o o M • •w o • j aa © aa o O n o © • © o © < •< © o © — < u • — j UJ o © V X aa 0 •© © < • X O 0 aa X w X z o a < o . © fc» o mm Of a 0 a »- o © © • a a o 0z © - i aa K N> aa X z j © • — aa Of S • •j a ♦ •♦ o X X 0 z a o o 1- © 0 Q z UJ © © o Of -J © w N» a a z a a o < a* ■a X o Ul © * 0 • O Of 9 X X 9 • UJ UJ © w 1 1 II O K n **>-> II 0 X 0 © O O H X ti n •a X o O II 9 II -> O -> o o n If II o a o o O < « o J e OJ 0 © © < u X < J u X II w < < O UJ a a u. j a o j UJ c f f < IL 0 IL 9 © z o — © o © © © z o u O — — o S © * o © © © UJ © O • © »- < ■s © «J O © U • •o J CD CD z < ia (A o a. z • 0 o a o • Of © 0 0• © © © 0 0 o »• o •a © Iz IL • a X t a* © ©XU 0 1© 9'OIf • •S' • • H • *^©• • «a 0 0 < N « Z 3 or x >• o -30 <* o - Ik • • a uj o • or • s j ©IO <J • J X < 01 K O • H• •© •a x UJ s• o a • — UJ O © a u © z © © UJ z • ml s *• •a • • a (L • > O X * < • © • z ’ IL O O S UJ U UJ Q — © X • i/i © J UJ • < Z X w- < P3 O hm o• X ' o • UJ * IL Z • ox© • I- o u a Z ’ zo O Z - Ul • • — X X OJ — ka a H © © • • aa © • a • z• — < aa U ►» © *- • J aa • ml • © o X a Z zo aa an na 0• o 9 • • a Jz • • X • • •U < 00 -a a0a Z 0 • w • O < • • X X « X IL z •a h © O O • • » • o 0> X aa © o K •< • ff • • O > Of 0 • aa Of z X a © m • • s pa •a fca • • • • *• z m • • • a • W UJ 0> © —X XX •X N •Z X N X 9 • 1 o •o o aa s IL < u S © •B N © o © © z—— —• — © © > Ul > UJ > © « ♦ • « s o a UJ N IL z W aa 9 © © • © 9 © © o U J o 0 X aa z w • L> Z k© II O UJ o Ul UJ < r< < Ual • • < z• • Z < K 9 Z Of fr> a z X X Z X UJ z aa aa z aa > © -s a u mm © S X 9> -i a 9 o a IL or O a UJ o o • r> aa o © 0J • o X u X or u. 0 © X u. IL U. o — Of PI © o «M Of P> o aa Of pi o © © © H © U « IL z a • •— J «a • U 9 IL OUTPUT 6 90 91 92 93 103 FORMAT C/70X.•TOTAL COST OF THE ORIOGE - S*.FI2.2) FORMAT!///.3X.AI.l0IA1.10tlHa>)) FORMAT(3X.A1.IO(AI.9(1H I . I H I M FORMATI3X.A1.101A1.* SPAN*.12.* I•>» FORMAT!IX.'BENT*.12.10!At.4X.*BENT*.12)) OFORMAT(/IX.•SPAN N O . *.12.2X.*OECK N O . •.I2.SX.F5.1.• FT.*.14X. 1 12.11X.* AASHO••I2.9X.F5.2.* IN.•.IO X .•*•,F12.2) 104 OFORMATII3X.•BENT NO . •.I2.5X.I3.•♦•.FS.2.4X.F5.2.• IN.*.8X.l2. 1 8X.F5.I.* FT.*.6X.F5.I.* FT.*.6X.*S*.FI2.2) 105 FORMAT!*1*.34X»40!*4*)./.35X.*4*.38X.*4*./. 1 35X.*4**5X*•NEAR OPTIMUM *.12.* SPAN BRIOGE* «6X.•4*./. 2 35X.•4 •.38X.•4 •./.35X•* *•»15X ••NUMBER *.12•14X . ••••/• 3 35X.•4 •.38X.•••./•35X. .6X.*TOTAt. BRIDGE COST IS WITHIN*.SX. 4*4*./35X••*••38X.•*•./.35X.** • .7X.F4.1«• PERCENT OF OPTIMUM* 5 .8X.•4••/.35X.•4 •.38X.•4•./.35X.401*••)) ENO OOIIOSOO 00110600 00110700 00110800 00110900 00111000 00111100 00111200 00111300 00111400 00111500 00111600 00111700 00111800 00111900 00112000 00112100 O fH <N 0 n < o o o u o J 0 • 01 M * • • M ik X b ■B -* z • z O K • fa* S * 0 O 0 UJ • o Z 0 >• o a < < 0 • > 0 o B ** J 0 •u UJ 00 < < O 9 •uj J • a -* o Z »- z B • * o * • X o - 0*0 u 0 a o o -> o < S o 00 X > *0 * X UJ 0 < • • < UJ B O N o fa* N J X9 J X o n o (V o 010 < 0 UJ < o a • 0 • 0 * fa* o > •* O V 0 ► 0 X X X a * 0 — 0 OJ z x z z z Uj - w UJ 2 o o a o o ui OUIO 1 9 O UJ X X X X UJ fa- faa- •* *- z X X X f z o - u ou ou ou z* 0o aB o0 zB 0o z < 0 < fa ta • M — a 0OJ O O o — 01 mrnmrn«• o 0 N • •* 0* • tl • 0« 9 mm mm OJ 0 z 0« o 0* (V o a* o -a •0 01 N z A 0* n O 0 o «* 00 OJ OJ 01 OJ OJ OJ fa- N fa* fa* fa* N O a o O O O 0 0 0 0 0 0 > > > 0 >> > 0 O 0 > CM 0 4 0 0 0 0 UJ o UJ UJ UJ 0 N fa-fa-fa fa H M M ta ta a o a z z O Z o 0« CM N <\J CJ fa*N N N o O O O 0 0 0 0 > > > > 0 0 0 0 0 0 0 0 0 N UJ UJ UJ O u UJ UJ Ul O N H fa N fa- N N N — t0 ta «0 M mmM a z e O S z a a o a © < N 9 N X N «0 • M W ♦ O * O «* (U o mm mm • o < z • « • — II • 0 a • mm m•m M «0 0 ♦ 0- a* o • -a 0 o O 0 0 H 0 U o M n M fl 0 • oj 4 •a -a fa*fa* w N 0 N N O r> O o O o O 0 0 0 0 •0 0 > > > 0 > OJ > > 0 0 0 0 fa* 0 0 0 0 0 ta UJ UJ UJ O UJ O UJ UJ 0 N N fa-N w fa fa N N •M ta ta ■0 t0 M z z a o a o z Z o B B B0 B 0 B B 0 O 0 OJ 01 O z • o • a mm mm 0* H 0% 0 • «• UJ o o u ■» • a* 01 fa• o N • 0 <0 • o 0 • tl < 0 , gj mm N 0 U < • 0 • aa 0 ~ 0 OJ ■ • K ■■ • 0^ 0* 0 • 0 -t mnm • 0- mm 0 U 0 1 N N a x z o a • N •Z b u o • a * n B O ** • A — V o • 0H X 0 B O Z N 9 B O a • M f! fa* o a z UTTABtICOOE.JCODE) Z z • < 0 SUBROUTINE •a fa- o o O n N o 0 0 mm mm «« O O <U n n N N o 0 > 0 • —0 0* mm0a mrno rnN o m •a 0a •a O ♦ N O 0 N N N N N o O 0 0 0 > 0 > 0 > 0 N 0 0 o O 0 0 >• > 0 0 0 N UJ U) UJ O UJ o UJ Ul UJ O H N fa N N N N N fa-N «« M ta M mm M mm Z a z o z o Z z z O B 0 B B B 0 B B B 0 B B B B 0 B B B 0 B 0 B B B 0 0 to o OJ n ♦ 4 ♦ 0 O 0 0 0 O « 0 0 O N 0 a X fao 0 aW • < mm a ■a •a a •a Z z < u X O fa& mmJ 01 Z 0 o 0 n • a> •a fa. a z u a* • z a < a a X & N N z a a 0 z Z < a a 0% UJ Ul a X X 0J Z 9 9 0 ♦ 01 • mm a am rno a rnX Z z a a 0* m o o UJ a Ik 9 aN 4 IL 1L & >o X z a UJ UJ N < 9 Ul a J mJ • •> a 9 UJ 9 9 X ♦ a < < u a M s > H fa- o a a a • X X u. > > o •a X mrnUJ o Z Z o < < < a a J UJ X X a a OJ 9 o X X a n •a < 9 9 X o aN 0 0 * < X aa a o •0 o z • o o a mrnUJ N < Ul Ul • a a fa> © 9 0 0 X X n mmu9 UzJ N < z z 0 fa- Ul UJ J -« a Z J a o o a aX N mm az z mrn N n 0 z X o 9 O a ao < o o ® u 0 < a ♦ Ul a • a • a fa- — — 0 N • • • a0 a aa •a X X X O X X a O 0 4 X z o n 0 u O > 0J 0i -a a 00 oj «o w OJ a* w w — 0 z N N fa-fa- N N fa< < < UJ o z < < < < X X X fa*N 9 X X X X — fa z z z z z z z z o ta o o o o o o o B 0 s VL u. u. U. ■0 u. u. Ik o 0J O 0 0 o •0 0J o N N o o o ■a 0J 0 0 -a mma* mrn mm -a a -a 211 WTTAB 200 201 202 203 20* 210 211 213 214 220 300 30 1 320 401 SOI 601 FORMATIIH1.43X.*TABB*) FORMAT!24X.•COSTBUCTED TABLE FOR BENT 2 SPAN NO.*.I3> F0RMAT(21X,•CONSTRUCTED TABLE FOR SPAN*.13.* AFTER ABSORPTION*) OFORMATII4X.'SUMMARY TABLE FOR SPAN*.13.* AFTER OPTIMIZATION* 1 .* OVER OECK TYPE*I OFORMATI14X.'SUMMARY TABLE FOR SPAN*.13«* AFTER OPTIMIZATION*. 1 • OVER SPAN LENGTH*) OFORMATI5X.•AOJ ?SPN.LGH. ADJ.OCX.TYPE BNT.LCN. SPN.LGH.*. 1 • OCKcTYPE LGH.LEFTOVER COST*) OFORMATII OX.*OAOJ*.8 X .•JJAOJ•,9X.•X •.9X.*0*.9X.•J J * .10X.*X-0*.8X. I *BCST*) OFORMATI10X.*OAOJ*.8 X ,*JJAOJ*.1OX.•X *.9X.*0•.8X.•JJ * •.9X.•X-0*.8X. 1 *BCST*) OFORMATI10X. • OAOJ • ,BX . • JJAOJ * .IOX. • X • .SX.*D4*.8X, • JJ**.9X.*X-0**. 1 7X,*BCST*) FORMATI3X.I4.3X.I3.10X.I2.10X.I4.6X.13.8X.I2. 9X.14.4X.FI0.2) FORMATIIHI.29X.* SUBOPT1Ml ZED OECK TABLES') OFORMATIIX.*SPN.LGH. OCX.TYPE NO.OF GRORS GROR TYPE SLAB • 1 ••THIC. DCK.RCTN OCK.CST*) FORMATI3X.F4.0.9X.F2.0.I0X.F2.0.I1X.F2.0.8X.F4.1.8X.F6.2.5X F8.2) FORMATIJOX.‘SUMMARY TABLE READ FROM THE DISK*) FORMATI26X.*FINAL TABLE WITH INFO. ABOUT OPTIMUM BRIDGE*) 00117900 OOllBOOO 00118100 00118200 00118300 00118400 00118500 00118600 00118700 00118800 00118900 00119000 00119100 00119200 00119300 00119400 OOI19SOO 00119600 00119700 00119800 00119900 00120000 f o r m a t i 2 7 x . ‘R a nked summary table for total brioge*) 0 0 1 20100 END 00120200 o o o o o o o o o o o o o o o o o o o o o ooooooooooo oooooooooo o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o ooooooooooo oooooooooo o o o o o o o o o o o o o o o o NNNNNMNPJfgNNNNNWNNNNNNNMNNNNNWNNNMNNWNfJNNMNfJNNMNWNNNNNWNNNN o o o o o o o o o o o e o o o o o ooooooooooooooo oooooooooo o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o ooooooooooo oooooooooo o o o o o o o o o o o o o o o o K k* 3 3 o o •K 9 • o u o u o a o •J 0 3 ia G3 J © o < O J o • •ko or s• •J ffl J (A U 0 J X< o• (s• A •o• o H O •z o • O• I1 o o o •u o o • S3 : S3 > mm X < X o z• b & X X o n o H •h • A z © m • < o 0* ' • J* N X o A OJ o »« © • it o A «• • n O 01 n ► X •♦ • 9 OJ A z a • • • • o © o X V X X • o a• 00IX*L M< o 0 X© © o 0 It o m• • Np> •© m • u X «• S3 o © n O •« z *• • a N • • u • • It a A © in • 01 IA o N ♦ X ■ • © OJ o © w X < m N Oj © Q • o z O © • • • • U • (A • o < A © • n • O N •© © • > k* Q UJ © <0 • OJ OJ « J • o o • • • o • •n V) © k* mm • ©O • a< o © O © © ♦ •o o o • © • OJ • © •© 2 Z > a • in A ■© o • (A © o• r•> 0©0 n• • (A < o o OJ ♦ o s • © OJ • > 2 O O m© • X a © • o «© © • JO o J © 0 UJ X V M © < N OJ o • tf) • © o • © o o M 0 0 • O J n x UJ < N > 0 • n© n• ©• o• »o• o •0 Z It o (A 2 (A Z X M 00 O •« o u •o mO • o m N © •N O • o •O A o k J\ a M •- a c K 3 < 2 UJ <A © 0 OnJ O•J O•J ®• N© OOfJ 0 0© O U O o Z ♦ 2 < 01 X X OJ < UJ < < \. N 00 OJ * b ■M X UJ UJ o o X k» X O X k» h. o O N X X 0 X o c X M ® o< — < < O o 9 o o o o 3 0 0 2 c o k» o < X © 9 o V) J U ■a c 0o o o < -• OJ n © 0 10 © X © © o • »K 3 0• z V) o X O X a Z z • J U 0 1 J © • ^• J 0i 4* •a © 01 < *- 0 B •m • 01 • S o a« < z 0 mm a 0• 9 0R •0 0 • K z mm X I— • • © 00 • 3 OJ •* « X X O o 0 « *• mm © N > » mm •© o o K © © 9 •a 0 • • • Q 0 O © O 00 o 0 B mm 0mm ka 00 © • • 00OJ •> o © OJ ♦ o • • • mm •© o o X X X X • o • t 00 s a a © 00 Z z z z X • o • z z z © n • • • © © © ♦ h» 2 • • • • © © o © X C OJ•OJ OJ OJ • 00 © © u • II it It It ♦ • t •o V X X X X X e o o M 0 9 9 9 9 o 0000mm aa UJ X X X 0 M OJ < X l» X o o Q o 0 m UJ < z u < < < z © e 00 o o It-a UJ UJ UJ ■a 00 < o 9 • a a B B It — OJ n « u »9 O I O I •1 O I o <I o o o a H • •o O ko • <u •u o • •• (A •u J • (A (A • (A I 19 z a • z o <H a z 9 O o OJ •© ©• 9• — ©• ^• < X - k* X O J • « * J - o J 2• • N • a * k-— — Q 1 - - Q OJ K u ©©© ••1-0 2 - •< • < • o > o o • •I U II < O l L < S K Z — V* V D U I I Z * ~ ~ lu o — uj n n n - o „ o (A It n o n o >- n - j a a z a n * w uj • >* © o a o S3 1^ << — • * •3 UJ (A w 2- (/IIN(A -•♦• I•I©J U•J J— USJ3 U•J • 2 2 2 2 Z~ 2 k. 2 2 N < oj < » o © n O OJo o ► ~ w ~ ~ Z • UJ B < - -N J J - It J — it ♦ a s B B B k * l l Z k - 0 l 3 X n n — j (A «•»J (A - 2 a a a a a z x - - C k * a O ID O V) ^ O© < « - IL « - It I O O O (A 2 O k- U. U - u - 2I Xo Xo OX QX QX UO ZQ -I It IB AH SU IJ LO o o© j— 9 kOJ OJ 3 01 « O © U X ♦ OJ < < 213 OKOSN 2 FORMATI4IIO.2FIO.2t 3 FORMAT(8 F 10.2 t 9 OFORMATI23X.34 I•♦ *I./. 1 23X.** SPAN LENGTH^*.FS.l.* FEET*.9X.•4* 23X.*4 OPTIMIZATION POLICY RE0U1RES A *••/. 23X.a* DECK FOR THIS SPAN. UNABLE TO 23X.*4 OESIGN A DECK WITH THE GIVEN • *./. 23X.•* STRUCTURAL COMPONENTS*.IOX .*•••/• 23X.*« JOB ABORTED.*.I 9 X . . 2 3 X .34(•••)»//> END 00126100 00126200 00126300 00126400 00I26S00 00126600 00126700 00126800 00126900 00127000 pH SUBROUTINE SLAB<FAII_.TS,WPAR,SL.IG.AOG.TDG.BG.OG.TG.AG.XIG.SBG.WG.00127100 IS IZE. AREA.O IAM.WGHT.SS.CS.CC.TC.RDHV.CG.NG.GS.RAIL.CLCL.RT.GUTT 10 0 127200 CNJ o o n s o e 4 s N N m M O © o o o o OO o o in © K N CM N •0m o O o O K N N •• o o <¥ 4 0 CO X o 0 mm 4 4 X X o u 0 < * X o mm 0 < <J • e •M o M 4 <SI w 0 O n 4 & k» • • k4 o M Z z X Z x o CM 4 o s mm 0 • tn U o o X o M z k- X 8 • r» UJ •M X 0 0 O M < 4 X 4 X • 4 — « ♦M (NJw < o w u M Z k- I ~ CM (A 0 o Q x o • CM k- 4 8 8 X • • ♦ 4 • 4 X * z 0 4 M <Q M 0 Mr u u « o o ~ a M M < •4 n to m « k- ~ X 4 ( A a a a M in > — < <- < < < < k- «•* 4 N C < N J X o x s * * i o 0 k- m UJ w o U J M O 4 <M < M t?< o • O O O 4 * 0 8 z z-W M o •4 8 u 4 4 o X O X • •« M u O • M • UJ m tn < » < * 4 k-8 o 4 > 0 — m - I I CD k < in< C4D M 4 M 0 — <o 9. i»• 0» ~ N • 0*0 N Z Z ~ X ** •* • I*) O w O w N I 8 s •» O • o * «•• vX ~X ka» O • • k» k n •* 0 o U J mi a 4 X Z Z tt U I 0 i in o < a •^ • If ~ ~ O A* X X o O < N 8 4 ♦ «* < m i o e t < & X a u © u o k * * m k* 4 4 0 o o o o z z i / i u. < (/) O V) U « ■%<» x x I ♦ I 4 X K N 4 Q h» S 4 V. — - K u - 4 N U 0 »- 0 o o © 0 4 • 0 0 4 o o o o o o o •m 8 o • J 3 0 O © © © © N • ••4 0>UJk- k- u k-u X 0 0 4 k» 0 0 4 tfl(A M < k. •« O o o o 1 n n ii <0<on 0 0 © in N O O tl Q >a 0 k- ( o - - « #M M • n o o x - '< < z z z 4 u U II O o mm cw N MII II x n — u u II nII || (U — UJ UJ w •M a U. mm mm n n I 0> 9 • o X • • o t M m m m m u N O O I~ Q O 1 X X o 0 8 II II * <J i n i! it d u 4 4 4 ku X~ M M X o K 8 z u u m in o d a u) </) c a W S k- O M R u . II n « o o o < a x — < o x x j o o — 00o o a m i m X X u. u. u. I a a x o k o mm M M X I M kX N 4 • in in H 4 mi 4 4 M X 4 1 mm mm • o CM •« o o 4 W 4 mm X 4 0 mm M M Q o ■« 4 mm (4 o X w 4 4 mm 4 Nu m 0 0 O mm in o X O • H N X 8 (V w 0 4 O 0 •* 4 M S It k» 4 U u m m M M K 4 4 X X X X V H X 8 o o 0 0 0 Z Ik J CM 4 k» X X 4 4 w X u J ■« O k- 4 mm w w 4 4 4 N t f> a in U mm m a 9 8 X mm 8 Z Z 8 0 • 4 4 a 4 X X O 4 tk (k • X X a * m in • 4 4 4 i/i 4 ti It c 8 8 mm mm UJ • • k- cv K It N N 4 X k» K • t* K UJ 4 4) 0 < O 0 0 4 4 m m k . •0 0 4 © • * X X 0 0 D o o 0 0 0 • o Q X • • mZm U • X m* • 4 X X o X X 9 o a N 4 II mm X 8 8 k- II II X 0 mm u • • O It w w (A u z J X tl k» o o 1 M o 8 in ft n n X X X Ik u. Ik o O Q u 9 X ** Q 4 4 4 q X k8 8 k» X O X 0 o mm 4 Z X X o a X X m u X X 8 8 n n X X 8 8 M M mm M o 9 o 200 400 CONTINUE FAILx.TRUE* RETURN ENO a a u 10 a n m < « < c z z > O a a a •4 o o a o o a r a a r o (A (A z 4a a a -» N 1 1-u # u (IIA >H aH a (-IAI4• mm n o s •-on o z n • H w O (A 0 a (A ro z > c * * O X • z ♦ 1A o •-4 • c • m o < 0 + 0 -4 10 a <A ro m r o o U * • -» • H a N a O H ( t> • r (A » H (A ♦ a r cv — a IA > • o n o v x * » (A o a n o o n a a o o n z u (A « •% •* «. 4 1 /l-Z tf> ~ o ♦ CD (A CD > ♦ o a z - *o nx~ s*a • ♦ o « 10a ♦ fO * * a > (A a a > z o O -4 • a • n a *- N (A S > a m > 0+ tm mm ♦ m a *0 w (A w a o a a D O • a a a a (A n a > > H II *■ *• N ro • • O o * * X X o z X • « • X X > o V z X a o •X mm M a o a o a 0m tm • > • mm r 1 a • X V) r > o mm a \ a a a X 4* M a u <A r 00134500 00134600 00134700 OOI34HOO »o o Io o »«• tm 1u u •* 0 t* u ►o o ►o o o o o o o o o o ft— mm u u u u 0 0 ♦ u 10 tm o o o o o o o o o o tm tm o o m u u a o o o o o o 0* m u U u u a a o o o o o o o o o o •• •« u u u w u u (A ♦ u o o o o o o o o o o o o o o mm tm mm tm w u Ul u u ro u u ro tm o o o o o o o o o o 215 © ** h•3 O© a • <flh•K © • “ J X u © ( 0 <A •J < u• a X# o o « h•aG<C o © • O IA •© © ffl©• (A H * J N —X * tiia man © uj a •z © • o © ►. u • • ©> o * <o C ©• G• -• U ha J• V) u X © »•r> •^ x ♦ V© » © • o•^ n *maa «# A z ii mu oaom M a* © kmU U J ^ U J X v» V)A«I» J A I UJX •(V h »« UJ•• - n j • (A • • UJ O UJ <A «J a j *- • x • ♦ j O (A N X yc-* (A O • xz (A a • — < t < <A <a u UJ © ** O X » • ♦ zoo a> z (• m z X x » X A V) H *■> O z C X m u/ »• UJ 3 X u «> a M ~ u ••* Ka © — J© Xo a x » ♦I ; O (A § • n *U ZJU ZJ u O ha h >(A <♦ X *Q © H © aoo • X © -I J 1 U h h a V A • • a*z• u <♦ JX Jzo z z o * a a * ♦• - © o < < z Z X IllhO • < m t AJ X a \ ■■J H> z X - o • • < U H z XX rn n s * o I IX ha— (A VA • * • z o ♦ ^ UJ s• * * U n x O * O V O U J o <A © ’ OJ 0 • a z a z ’ * u x m u ♦ x © UJ © © • > » Q I »a • •o < a uj a * • o ^ • *x H O ~ J o U J ♦ o z > ( Ak •• z •«■*♦ (A ix V)^ u • — <JX I a X < * •© u «•^ I Z - -IUJ* ©♦ K<A*• < * XK © e Q* **• -a# < * J s zz< za t f ) n u, 1 ♦ i UJ • • J O -» * © N o < lJ X o <a© X• < O 1 o M O O O (•V © O O oo u u m • - © a© © • • t© © a ~ j v m a>M M aa »• a > o o •© © x a • • I evt — - J UJ< o J »> A X I • • • o « o o x ia © m » •z • V J • • a - : — (A uj • • x O « V)aa W © < x I ih-© UJ a (A • ( KJUJ Z ■ UJz ••u J V5 A ♦ B o o a n n • — — O UJO (A ■a W•)O• ti n 1 ItO N -© N «•c o © © © x n x (A Z X O UJ ' lAMOBXP**)- — -» •* n n n tl UJ u > o DWH j a - a <u o- ^•• -n rH h- von »-n <u - xc c a z < z © It © VA •- * * # « - n i! u. a z ~ Z II > H O O j z n it II X <U j x “ o J U U U U U r t O s . a* x © u uj a u J n n X - I X o o a a a k I ^ ia a a © © x m o h z32 O J xaaah»aUJUJQ. a » U . U J j x a X X 1 XU j - - - < O XO X < > • > > ► X X » * o • •u «A z o < h. © a z o SUBROUTINE n h m a u 9 I A © X^ o Ox K O•• A z o « (A H U> • W (A tn> « UJ (A h»a -< IA ♦ •© I A IA IA © O o 3© O a ♦ -* I m © « ©• •* X a aH (A * < A © ♦ H«■1A © - * Z « U X • © •© »♦ X - a* h »«■»u a *A X « M ♦ © 9U * X a — o«* * iA ♦ W aa X © ha X X IA * © a- X x>»* a « (*VIH\ (A © © - II X (A II O* IA © IA © IA O © oa X aa o o It II • • H ■* X X tl H X It oo h 3o - (Ah Un --» h-o ** X <A X * r-* r—I o o © o o © o o o o o o o © o o o © o o © o o © o © © © o © o © o o o o o o o o o © o o o © o o o o o o m CO © o t 04 n X in © N © © © M 04 F> X m © N © © © 00 04 n 00 •4 p« *• 04 CM 04 01 0 4 04 04 04 04 04 tn n •n n o o •* 00 ml 00 00 X X X X X X X X X X X X X X X X X X X X X X X X X X w* M 00 00 00 MM 00 00 00 00 m 00 «■ 00 00 ^0 00 00 00 « 00 a* 00 o o © ooo o oo o o o oo o oo o o © o o o oo o o o o o o o e o o o © o © o © © © o o o © o o o o o o o o o o o o o o o o e o © © o © o o o o o © © o o © o o o o o o o o o o © o o X m © 0» « © e 00 04 n X i n © s © © o 00 04 !*? n m n n p> X X X X X X X X X X in in m m X X X X X X X X X X X X X X X X X X X X 00 a* 00 00 00 00 00 00 00 a* 00 00 *0 «rt •« 00 00 m 00 © o o o© o O o o o o © o o © o oO o O o o o o o o o o o o o © o o o o o O o o o o o O 1 o © o O I X i n© N < in in in in i X X X « X 00 00 00 00 < © o © O i o © © o * 00145800 00140700 CM STRUCTURAL EVALUATION AND MAXtMUM SPAN in N tf) ( 4 9 Q 9 f t to l ui (/> 4 * 4J K o « ©M (A M X 04 0 © — V)< 5 * X X a to© > « aa< m J ♦ in 9 j i N O 4 < ■ Q •0 *4V * u z « 9O VX IIHIIJX J* ZX O ** < II a © © *a Xft ♦ o »- or — m uj i 9 9 © u 0*101 9 9 *- z — or ' o -i ao N iftn iftn •* u *JO' com • •m 00Ulk © a * ai o o UJa . ©4 O J © ooN • • • • Z •I J J o o zuus © © M IIx u. in u j i Z U n ** it a i zz z Xz XU U .- X I © J N Ik M S UJ ' o CO z s a UJ UJ 4 0 o i n o r © or or M UJ «J »© 15 aa o 4 ft a < © or a N a* o ©m J 9 J j s > a 04 tt UJ X or uj\ o • j in # UJ UJ 15 m k» -* J m orm n X Z 15 «« o u ;> j UJ a * j UJ X in a x j Z O J a a u j in © j • 0X a X »0 • o in • • «* Z ft 9-Oi u .< to UJ o o O 4 J o •1 * J j ** © N a r a © i n a UJ 4 UJ • © a tf* ♦ u 0 > • o x < • •X < u 4 aa OJ « • - 9 o k a m or K in © -J 4 9 c ~ 01 4 f t > • o 15 V) • UJ « ft 4 UJ a or** < •tf J aa or a o z *•H in in © a ft • in 9 © J o a ar 4 O • •X a 4* in X u j m • 4 a a i n O o ft z O “ 9 x » i o tn z z to o N Z 04 4J n >O ft < < • u j \ UJ 4 • • o in X 04 n •\ J ^ J a o X X ® o z a Z z a s o © < ft s a z J < o ► © o H © • • 4 z • ft X 4404 m n xz ^Q On 199 • it** 4 4 •* o z o or a — 0 4 in 4 in © I « © 0 0 UJ •* k- • a • m < z O - * — 04S Io- u u ft m X k> a a o ft tf* a 4 9 * N •o f • z x • u — t w 9 ♦ a 00 z < ♦ ** n «■* J tU z 4M m u z © a Q Xft—o f • ft ft • m a z a ♦ © X o J X o h or © z a t f > 0 a * X 4 01 >• a o in• o ■n © U4 Z j *.c. ♦nx 4 * • J 00 UJ 4 m N ft 4 Xm 9© jI< 9© a 4 © • >O 15 — w9 *"> 04 UJ © m UJ « ft u in a 2 © <~ ©S * ~0 X « a 4 a Q 9 UJ ' 9 m > a Z ft I s o r z o r a J © ift ** U J 19 4 k> 04 01 • X • a w 4 < ft O \ ~ © x x •• • ** < • • J • ♦ ft a* o t* UJ o • x o s o a —« • c j © Z N n © in • •m o it inz uj 3 V5 S ft ft J 4 tfj J © «* © n o < a ► it© j O X ► x H a • •© in i - c • • v •a UJ a t f • • k w k . # 4 O a * • 4 i o i n i n • o © o UJ • U J z UJ © or~ z in k> < 4 K J o in •tf M »-ai a> ai JI o — © ^ 04\ tO 4 o V 15 x uj x H X •a © © na o © o a a•* a3 It• ~© J• ©•f © < < i in i o 0 3 0. < a •o I•z • i or • 2 H tl 19 9 a ft ft a ii a © X H O Z Q o z x n •• X X u u - J j o O J Io z u ui* o n a i n 9 tX t o < < 0 II « * © © »I fl or tl II 9 © II UJ n tXtWM cdII c3r 9ii o ~ w t|zn * J II It a > * >U (I i~l IItANII k J— k.5 Q or in O < •» 00 © in •J It atf < n ii a -iz oj in f w w i/)o ULUL U z u■ in a* J a Ita a O fca m a a a © 1 i . z u IkUJkOXUZ m a n mm* “ 9 X - •x u. - cr cr o u. a uj o X 0 9 •* *• *■ J < o X X > > > > > s o too X ro (A o • W X • O X ro ro o A x a o x a o o tm Xz oz A «* — tm cz xX H m x tm m z z z z z x 9 9 X X • u w > x -4 m c M m > z > 9 tmo o — u — — X X x (0 ro 9 9 X X w« u w X -4 Z pa a a* A *4 O • • X A A X o X <4 H x X aa •* «* H x X • ro ro z z z z z z z 9 z z ♦ o p« mt XX xX tm nm a o z x s - x - m> o o oz —z m> o x(A -z m> *x* -z o -o * «* o o o cu -o -o • o z - o C( — z * - z « x o x X — — c x x x x X -f X tm *a < n a 9 9 X X — w « z1 10 aa z z z X 9 — u x A a m > o x X x u o m x x 9 x x • x x ro 1 — * > ro c ro ro 10 — • • « — • • zu • • z 2 Z 2 N Z Z X w z z -< Z Z Z Z *0 -- Z Z (A Z z ~ z z C* O U 03 9 1m 9 9 Q CD 9 • X > X x X — X X x x u u A — — — *■ a» • « tm X W A — • W • a < W < — o CD • — 1m— - X w ro -A Z O X (A -4 eO > X a 9 o z O - I o e - z - > (A U 9 I A O ro o 9- a o o 9 o o o 0 o A a m z aa tm aa M ■a tm tm aa O o > —z z z z z z z s z c r mm mm m m m mm z A z z z z z z z z o r m tA 9 9 9 9 9 9 9 z z (A a ■a ■a tm ■a tm aa aa aa s m a c o o o c o o o aa w tA z z z z z z z z o x r < s a (A (A 9 A 9 X z X X o o r X o O X A < X 9 A • z tA r c z 9 — 9 tm -< a mm a a a a a a • r 9 9 9 > 9 9 (A — 9 ro 9 ro aa 9 • ■a z • < 9 mm o w aa • • ro z • • • x r 9 O • ro • 9 0 a X O mm > • X z A « •4 • r 9 A > aa • > •< a o r • X X H A X 9 > X 9 x A X -4 mm 9 aa z w z aa O M < X tA 9 9 9 X • X 9 H 1 • m m w a a — X 9 r r • • m a X a* ro • ro A aa ro X c r • 9 o < w — 9 aa X O H • X O X m -* A • 9 • • a a w • A z ro r ia • z X o X • 9 aa aa • mm X • - o M 9 z > • aa X A X X 10 X r 9 •m z X 9 X Z O X 9 r x X o a > x • « 9 ♦ X (J r ~ X X tm A A • N X 10 A X aa • M a — X• u * — c tm N a o < 9 tm z z X 9 X x a x 9 O c A © X < 9 X c « z X 9 9 — 9 O A 9 9 mm 9 O n (A 9 mm a a m 9 X X X • X — o aa 9 A ro ro O • ro < ro aa aa w • X I o A aa 9 9 « z aa mm • X z A • Z o X aa 9 • > X © © aa • 9 C • A ro X aa 9 • H X X c H >o X r m 9 m z x 9 • X r x o 9 • z X o 9 A O 9 X aa 9 • 10 mm © © o ©o © o o o o © Oo o © o o o Oo o o o o o © o OO o o o o o ♦ » p * * » » » * * > A A •4 "0 s •4 *4 **» N A A A A A A A N u © © A 9 » u ro pa O © © N A 9 G o © O Oo o o o O © o © o o © o O o o © o o © ©©O©o o o o © © o o O o o © * A A A A A ro pa O o ©o o © o 0 0 1 *5 90 0 o o © o o o o © o © © o © o © o o © o © > * » © » » • » © © © © © © © © tt © UI ro pa o © « N A 9 o o o © o o ©o o o © o © o © © © o o o o o o o © o © • » * © © © ro pa o o o o A ro A « 10 aa • aa aa o o » © u o o -4 • -4 aa aa © o o O o o Oo o © o o o o o © o o o ©o o o o © o o o o o © © o © o o ©o ©o o © o o o o o o •a — tm m > » * 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 tm mm a* «a aa aa tm © o © o © o o o © o © «0 © © © © 9 9 * u ro aa o sO c: <0 A 9 * Ui ro mm o o CD A 9 ♦ 9 o © Oo o o o o o o o o o o © © o o o o Oo O o ©©© ©o o © o o o ©© o o ©o o o o © o to X 9 aa X • 9 (LB ,L SL .LSR .DLRSL .OLR SR .UCS .UCC .USPP . • A A Xo A x a m o z z > X o o t m— — z X x c X X mm X X BTOSN x x o *a • X • z N mo o H U • • H ro 9 a» • Z # > -4 ro z a o t_ c — X X A z X uX O H N o Ii Z r — O O 9 — ♦ z t mc a. OSUBRBUTINE o Z A A •4 x x X o O A X H z A A z Z X X — — > o M — aa X z • • z pa c L. <_ K X 9 m w *a x — II II w «• r «< •• u N3 00 00151600 <T> r© Cvl 0000 o o o o o o o o s • o 9 « • 0 O 3 0 K © Q 0 0 o UJ z © •" ** • 0 — UJ ♦ o - V) w 0 • 3 O • 0 M» z ~ 0 J J V) UJ © 0© N ♦ z Z I X© 3 < «j a o z ©~ 0 TO 30 2 o o < 0 O o a « * o z a j o* • Z 0 o o 0 j rj * tm J 0 •♦o 0 ~ © > • J K © o UJ D O > © V *0 o ©• mm ^ o a o o UJ o -0 - <\l a j o z a ♦ ~ a • * ■ K oj -* X J h- W • • j + -» « z o U o u j a (M n >• W •z w 0 o o Z UJ > 0 * 9 i UJ K • • 3 S U . © a UJ UJ O - a uj V) 0 or © © © z z - u z • o m, Q > n r> 0 0 a •0 J J J O © J j m -> ♦ .* H S H MM J J »j j •Z N © 0 oo aa < o a o a < X O •* © V © v < *• a -© © o > z o n o n ♦ 0 •m ♦ O N ©* •a N Z •» X s- <s -> ft M -M -• a z u U CL Z ^ o ♦ ♦ MM © • «"» « ♦ n a ^ z v a i~ z i a -* • K M 0 •0 I ^ < a 9 < •♦ Z M z ♦ *• • mm UJ • * ♦H u - • o o ft. — o w Mf*>< • J © • 1 - « a j ii j a 0 ~ z < ~ z a o- Jw H d - n x a Ko « -- a z z a » a z ~ ti o o 3 a J X IL o© h ~ < Z - u a • •M a a z 0 j X « ii < z o «• 11 w a a z o j X c < z ♦ ♦ 9 tm ♦ 0 0 0 0 a U. 0 0 * * • • ♦ 0J ♦ MM «• «• • • © fU o mt © s *0 A \ «• • \ “i MM •M • V n M a • o M a • w * • a 3 04 a n K it N n « u V V 0 a o • < z © ♦ X N z a • z u ♦ a • N z MM M M +0 s U \ z o • a z * • MM “> z ii • • z a o »- © 0 MM « J II « w • MM z a H 0 0 a mM MM O i< a N >- MM u H MM J ii z 0 z O o a u. Q o V z O © z ** U © 0 * 0 N 0 0 0 0 N O 0 * O H O 0 MM • a • MM MM N n 0 MM MM • © 0 M« t> N • J M M 04 a a UJ O ♦ < N 1 X © ft* © MM ♦ • < • MM o 3 MM 0 -> «• • MM • © © a ■ M B M • 0 © © a MM a « MM 9 • MM * • 0 0 © z J u K a 1 MM MM z O 9 ♦ z 0 0 Z © «M MM > K J s • • © 0 • MM O Ul z II II o MM Z ♦ 0 • © O o 1 MM MM < M It <0 n n z J 0 o MM J » ♦ • • MM © a »- w 3 M M M o O 0 O MM 0 • O ♦ o a a ■M •M MM MM MM © o n « II H © 0 J H MM MM M H a n <1 u u J © J a a 9 u o a © mJ o a a a a a z MM u © a O MM MM ** * " ** •> 0 •> N © 50 0 V) IL 0 « m* MM •0 • > ~ & 0 « M ^ «■»t a • o •• z ~ * © ~ 9 U. H *• ♦ « © H O U. 3 H • • 0 •» & •» Z ^ » V J o a >• 0* •a a n z u« • Iu 0 ♦ U. u u 0 » *f■f»u A ♦ -> J u n •* © - 3 fc3 O U O0 ♦ 0 ^ a nh u JUU R H a IL u O-•>>U^ 0 O U U n ro U N *“ 9 o 9 X > ^ — — UP — — — O o — 9 O 9 X > w 9 m s C 9 Z o 0 s H s H o z Z 9 ro o w — X ro 9 9 s P o 9 n II u u o o o o 9 z Q X P P P 9 9 9 9 O s ro Ul Ul O II II U u o pa ft P 9 s o Z z I Iz s ro 9 9 — 9 c ro ro Ul Ul Ul p r o w 0 a 9 0 9 o — — — — w — — — — — 0 X — — — — — o — — — — o IN) s s s CD o n w c * w o o ro 9 o u 9 o u 9 H 9 9 — — 0 X - o--O X 9 H «H 9 ro s O 9 u o m m 9 O 0 H ro X ro 9 W W i u w 0 < «< K o Ul (A — ro • O O — w X — o Cl o OS X r 29 9 • • r 9 o x z «.- ro n 9 U 9 00 Ul - 2 Z u x SH 9 - ■ S m i m c c c • nironi Cl o © Ul 9 © 8? -r z o 9 9 Ul • •0 s • ?S • roz O 9 r ocui X X z 9 > r 9 — z 9 U> u> ro a ui X X .H C — -* 9 O — CD X W X >’ •♦ 9 ♦ r c 9 (A Ul 9 9 9 ro x o r • ~ z - 9 — Ul • 9 I 9 > Cl ro -» 9 X ro~ c Ul ro ui 9 c. Z • O 9 • ro z s ro • • z 9 Z Ul — 9 — ro x a 9 O P 9 S ui n> 9 zx • — 9 9 X I 9 9 Z 9 U) p 9 ♦ 9 P Ul > 9 Cl <■* I Ul o p r o- • • — r o9 o in 9 p • i p i ro ■ 9 9 O o 9 P- ro r oo o 70 o © Ul in m rs> — o Z Z H o *-99 9 9 h — o r > P *- u> h ro ro 9 x r ro ui • ♦ u> o u 0 ~ B ~ — 9 s - X ui ro X S U) - u —o u— X ~ 9 9 — X r9 9p 1 u U9l 9Ul TO P • 9 — c I 9 9 9 9 9 9 • — — — o Ul O Z X 9 X C Ul x r oro9 HX X 9 9 S 9 O9P 99 9 U Ul UlP 9 X U II — — O - Z I I9 - - p m 9 9 Ul ♦ W - z u 9 1 s ro ii — — it <* — — 9 — 09- S 9 9 • ro— 9 ro ro x X X • Z Z *P 99 P — m © •o o - - — x Ul c ro9 p r 9 • z • • n H II w 9 * < row t ♦ ♦ ♦ M ^ r c ro ui • n 0 Z S Z Z z z © s o © in IF(CBC.GE*COL(I)) GO 9 O 9 X > s — s 9 — O • <0 <0 0 o s s O a s 9U l O X M w ro • c « ro — ro 9 - o - * -z • 9 U Ul - a s ♦— Ul s X ro— ro• ~ c •» ro • 9 C. r ro o — — — — — — — — — — — — — — — — — — — — — — — — — — — — —— — — — — — — — — — — — — — © © © © © © © © © © © “ ~ ~ ~ ^ ~ turunjwruNi\) — — — — - - - © Ul > U M — P 9 © S © O O O O O O O O O O O u w w w o u w w o o o o o o o o o o o o o o o o o o © “ “ — — — — — — . * - * — — — — — — — — — — — — 00157400 O O O O O O O O O O O O O O O O O O O O P O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O Q O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O pppb N> N5 o BTDSN 00162700 OFORMATI1H 1• 29X.47I•*•)./• 00162800 1 30X ••4 BENT AT STATION* #F9*2*• WAS BEING OES1GNED *••/. 2 30X* •* BORING NUMBER * •12** WAS BEING USED*• I4X*•4**✓. 00162900 3 30X. U **F3* 0 * * INCH 01Aa PILE WAS BEING USED*•1IX*•4•*/* 00163000 4 30X* •* BORING NOT DEEP ENOUGH* DESIGN NOT COMPLETE 4*./. 00I63100 00163200 5 30X ••4 JOB ABORTED* *•32X•* 4 * */•30X *471 *4*>.//> OFORMATI1H 1• 29X.61I•*•)♦/. 00163300 1 30X* •4 BENT AT STATION**F9*2*• WAS BEING OESIGNEO*•15X .•4• *00163400 2 /•30X* *4 **F3* 0•* INCH OIAMETER PILE WAS BEING CONSIDERED** 00163500 00163600 3 I5X ••4 *•/• 4 30X» •4 ALLOWABLE UNSUPPORTED HEIGHT OF PILE***F5*I•• FEET* •00163700 5 I1X.•**./• 00163800 6 30X. •4 HEIGHT OF PILE ABOVE GROUND LINES=**F6*2* * FEET*•14X00163900 7*•4* */*JOX* •4 UNUSABLE THICKNESS OF TOP SOIL FOR PILE SUPPORT*** 00164000 6 F4.1 f t FEET4•) 00164100 OFORMATC30X. •4 NO ADDITIONAL PILE SIZE SPECIFIED* JOB ABORTED*** 00164200 1 1 IX. •4 *•/*30X*6I1*4*)> 00164300 OFORMATIIH1•29X.S5I•4•) */ * 00164400 1 30X *•4 BENT AT STAT1O N •«F9*2* * WAS BEING OESIGNEO*•9 X *•4* * 00164S00 2 /• 30X••4 LENGTH OF SPAN LEFT a**F4*0»* FEET**22X.• 4 * 00164600 3 30X • •4 LENGTH OF SPAN RIGHT** *FA*0** FEET•*22X*•4**✓. 00164700 4 30X* •4 BORING NUMBER*•12•• WAS BEING USED••22X* *4 **/* 00164800 5 JOX. *4*«F4*0.* INCH OIAMETER PILE WAS BEING CONSIDEREO* *9X *00164900 6 •4 *./•JOX. •4 ALLOWABLE MAXIMUM NUBMBER OF PILES IN BENT** * 12*7X• 00165000 7 •**./.30X. •4 AVAILABLE LENGTH OF PILE FOR PENETRATION***F5*1* 00165100 8 00165200 • FEET 4») 00165300 OFORMAT130X • •4 NUMBER OF PILES OEING CONSIDEREO** *12*17X*•♦•#/* 00165400 1 30X. •4 CALCULATED OES1GN L O A D * •*FB*1 * * KIPS*•I6X*•4*./. 2 30X. • 4 TOTAL PENETRA FEO LENGTH OF PILE***FS*&*• FEET**I0X* 00165500 3 * 4•*/* 30X • • 4 CALCULATED BENT CAPACITV***F8*I•• KIPS*•I4X*•4 * */* 00165600 4 30X . • 4 NO ADDITIONAL PILE SIZE IS SPEC IF1ED*••15X••4 * */. 00165700 S 30X, •4 LACK OF SOIL CAPACITY* JOB ABO R tED*••I7X*•4 •./. 00165800 6 30X. S S I »♦•)) 00165900 00166000 FORMATII5.3FI0*2* I5.F10*2*//*7F10*2) 00166100 END GEON SUBROUTINE GEOMCSTA.GELB.HPAG) 00166200 C VERTICAL CONTROL PROGRAM 00166300 COMMON/10/ SYS1N.SVS0T.WKF1.WKF2.NNBK 00166400 DIMENSION G R S ( 100 ) .GREC1001 00166500 DIMENSION P C S ! 10)*PIS(10).PTS!10).PCEC10).PIE I10).PTE(10) 00166600 01MENSION P C T 1C10).PCT2 C10).LVC<10).KL1(10).KL2(10).CP1(10) 0 0 I 66700 REAL LB.LVC.KLI*KL2 00166600 INTEGER SYSIN.SYSOT»VKF1.WKF2 00166900 00167000 LOGICAL CUR V C 10) DATA IGEY/0/ 00167100 IFC 1GEY.NE.0) GO TO 39 00167200 IGEY3 1GE Y ♦ 1 00167300 REAOIWKF2 BN N 8 K #1 JNC.NSTA.ADT 00167400 FINDCWKF2"NN8K) 00167500 OO 5 I3 1•NC 00167600 RE AOCWKF 2 *NN8 K •2 )P1S 1.PIS2 *PIEC 1).LVC(I)*PCT1(1).PCT2 CI).PCS)<PCS2 0 0 1 6 7 7 0 0 FINO!WKF2 aN N 8 K ) 00167600 PI SC I)3PISt*l00e«-PlS2 00167900 PCS!I)*PCSl*100•*PCS2 00166000 IF( I«EQ«t) GO TO 5 00168100 ERR* ABSC P IE ( I )-PlEC I-I >-PCTl C I l M P t S C 11—PISI I-t >)> 00168200 IF(ERR.GT*0•001) GO TO 120 00168300 5 PCECDsO* 00166400 OO 10 13 1.NST A 00168500 READ!WKF2*NNBK.3)GRS1.GRS2.GRECI) 00168600 FIND!VKF2*NNBK> 00166700 10 GRSC I)3GRS1*100.*GR$2 00168600 OO 30 13 1•10 00168900 IFC I.GT.NC) GO TO 30 00169000 00169100 CURVCI)=*TRUE« IF(PCS!II.NE.O) KLlCI)3 IP1SCI)— PCS ! I ))/LVC(II 00169200 IFCPCSCIJ.EQ.O) KL1CI>=*5 00169300 IFCPCSC I )»EQ« 0 ) PCSI I )=«PISC I )-KLI(I)*LVC(I) 00169400 K L 2 C I )3 1— K L 1C 1 ) 00169500* 00169600 PTSCI)=LVCC I)+PCSC1 ) PCECI)=PIEC Il-PCTI tI )*KL1(I>*LVCCI) 00169700 PTEI 1)3P I E ( I )*PCT2<1 )*KL2CI)4LVCC1) 00169600 C P U I)=.S*(PIE<I)-(PTE(I)—PCE C I ))*KL1CI)—PCECI)I 00169900 IF( I.EO.l) GO TO 30 00170000 00170100 IFCPTSC1-1).GT.PCSiI)) GO TO 120 IFCPCSCI)-PTSCI— 1 ).£0«0) GO TO 30 00170200 00 20 U 3 I.NC 00170300 I 2-NCM-I1 00170400 PISI 1 2 M )~P1S( 12) 00170500 00170600 P I E ! 12*1)=PIE!12) 00170700 L V C C 12*1)3L V C C 12) 00170600 PCT IC 12*1)*PCTI(12) 00170900 PCT 2 C 12*1)=PCT2I12) 00171000 PCSI I 2 M )3PCS( 12) 00171100 PCEC 124-1 >=PCEC 12) 00171200 20 CONTINUE 00171300 NC3NC*1 CURVCI>*=.FALSE. 00171400 00171500 PCSCI)3PTSC I-l) 00171600 PTSCI)3P CSCl+l) 00171700 PISC I >*PTSCI) 00171600 PCECI)3P T E C 1-1) 00171900 PTECI)=PCE<!♦!) • ro o o o * Ul 10 - O o o © o o ©* oO tou ©o •> o • n - o ro© ro•»© m *• ft ~ *•o n a oo o ft o ti o r o ir *no i r ro o mrmo r a a a a m m * ~ ro ~ z mm 2 H z oa ~ < • H © ©* H ** © © < i ~ <• x X X X X canHHoxo H O U Q l / l N Z O O II z ~ H H O »• * * > > > > > a m o ro m a m -J -* H •* Z ~ -* O > PI z> a h o h aoz> > zus — © o r c • u © ® > - * ^ © > © -«c • • p. c — u U Q> M m r ii r o o i m • p » m • m r r h m h Hft© U• m *• -» a ~ © a ~ ft ro m - a x ro ro «• t - ©- < • - -4 =-C oftm~m Ca • • • n o o m i •© o o z — </)<- a H O • © aaz © ♦ *"» ♦ < »■* ♦ < M •• ft ro ® • • • © nI i • O o m * -> r ©© ro x » ro ro ro -> > O W © p* — © — rmi © © © © I H — © r> > — m s > — s MXo • o> © r I > IS) o •a • H H • ro © x a© x a © roOH >> r -»o r n o © © O ^a © 10 Ul *• w *H x • u o oo mm mm ** H *0 u ©I fO • © > •• O *+ - O ~ ~ w mm © o H© O ~ oo ~ ~ H * w *4 *• C >a oo « ro •• # r • o r * O © Ul X © © '*■* o a < a <a ao au o © nn n ft h *■*H •> © I * • mm f g M X © u •• aa I ** >a OH U ffl * * * •o • • 10 ro ro • * ft f t ©~ a a LVC<DcPTSII)-PCS(I) m ro T l T* Tl Tt a w « o « T ~ x zo oooom -i^Qammomma>a->r o a> © > r n o z H a o r a a o © a o o oo o o o o o o o o o o s N s <0 N p * p p p p p © ft © © p u o oo o o o o o o© o © © o o o o o o o s s s p p p ro mm o o Oo © o © m o o o o o o o ©o o © o o o o o o © o o *• N s N N s N u u U u u u to to to to o a N © © p to 10 tm e o o O o o oo o o o © o e o © o o o o o o o o o o o o o o o o © o o o mm N s Ns N s s ro ro ro ro (0 ro ro ro ro o ft s © © P u ro •• o o o o o o o o o © o o e o o o © o © © © 00172000 o o o o ©o o o o o o o •0 N N s s s © © © © © © © P U ro mm o o o o o o o © e o o o o ro lo ro eg SUBROUTINE SOILILB.GELB.IS.NSSI.STSS.SQU.SFSS.STBC.TUSI 00175600 CM o o N 0 S 44 © o o o o © 0 © 0 0 N N mtm © O o O o o o o o o o o o mm ft n 0 0 0 0 s s N N mm 44 m A* o o o o o o o o o o ♦ 0 N aa o o o o 0 0 N ■A o o o o 0 0 N •A o o o o N 0 N ■A o © o o © 0 N ■4 o o o o © 0 s «A o © o o o N N •A o o o o © o o o •A ft * ) KK s N N s #4 o O o © O © o o « H s •A © o © © 0 K N m O O © o 0 H S «■ O © © O s K s m O © o o a N S •A o o © o © K s © O o o o © s 44 o o © o o o o 0 9 N *■ o o o © O o © © o O © o o o o m ft n ♦ 9m H9 9 N9 • b mm «A mm •A o o 0 © N aa o o o © o o o o N © © © © © K N s mm mm AA o © o o o © o o o © N e © •* © N ml •4 oo o © © o o © o O ft n + © © © N s N 44 mm 44 © o © o © o o e © o © o 0 N © © © © N N * ml mm mm *4 oo oo o © o © © e 0 © N © © © © N 4A o o o o o o 9 *4 O o o o o 9 o © O © o O O O © © O o o O O o ft n 0 0 N 9 © o o © o © o O o 9 9 9 9 9 9 9 9 mm mm mm mm mm mm mrn •4 oO O OOO O O O © O O o O O © O O © © © © © © o ft mm mm 9 99 © o © o O O © © n 9 o o 0 0 Z O 0 mm mm V) 0© 0 0 f t il z • o 4* 0 mm z o z 0 u © « mm 9 ft ft 0 hIL 0 • u K IL s * • O »• ft • *>» ft 0 IL ■A © • • X 9 (L 0 o m X mm 0 o 44 s mi %A ft • o D mm IL Q O 3 X o UJ • O 9 • 0 © 0 > • o • K 0 a ft mm O • o • o 0 > z 0 o ft 0 0 w A 0 o 0 > a 0 0 z ■A 0 h 0 H 0 K 0 0 s > 0 o Z z Z mm c o o N ■■ «■ ■A 9 a 0 0 0 Z J UJ O Z z z © z UJ UJ UJ •J UJ z z z z < >o mm ■A mm UJ z u o o o s •A mm mm mm J a 9 UJ © • * c o AN -> UJ 0 0 Z V b UJ J w • ■A 0 11 • o A% 9 b • 0 44 • w © o 9 9 b »• • 0 mm mm •A ft • 44 X w it Q 3 9 ft © o |a o © o 9 z mm •A • 4% X * 9 9 mm s © Z Z O o • •A z Z 9 N UJ ♦ Z J z J ft ft • o • o IL u. 44 0 J 0 * tf R ■A o mm B w 0 11 < • 4 mi o o 0 o < z < IL 0 UJ 44 O a IL o 0 Z a Z • z • 0 ft •> ft 0 IL • IL z * 44 it II B B 44 44 w 0 o 0 O mm < w Z 0 UJ 44 0 Z IL Z z ft o 9 b 0 ♦ • O O • ■4 o 9 H 0 n ft 0 (A • 0 e f•t o 44 44 44 44 44 44 o o bm a bm O © 0 1 9 • mi o UJ 0 AN • 9 44 o < W o II o 44 z b 0 9 H L» 0 IL M n ■4 Q 0 O a •o •o 19 o © o • M A A « (A Z (A •A A A A •• a M M (A (A *-> «a o <A • — — J - * O E 0 0 — -» o a 0 Z I 0 •9 fRt~J 0 © • < (L o z Z ~ 0 U 0 IL 0 ~ ft o J ♦ — O -A J © - O Ul A* 9 © 0 Ul (A (A 44 0 — «9 J UJ © I w (A mJ ^ 0 0 1- (A K 0 0 ■> A* ♦ U A •9 n - iZ 3 Q ••O • * w (A© O I >- o H I I u w - x - _3 -^ . (A O (A >- O 9 in u. m 9 UJ 0 © (A• * R O“ f ** f f t U J I J R O U l O00 M t f j a a *a 1 V)>0 ** “ IL “ 0 0 a n 0^0 © o z z J IL ~ IL 0 Z 0 Z O < c oiiBj<in***»««iuii*»Qn “ ii ii• a oo- - nr O H W < l f l A A « U J I | A O O R t t «• R a — L» ^ 44 O 0 A X — w«AUfc-OU.0^-U. © IL + H + «• - H- © ~ 0 a.|f t © - R 0 z 0 UJ 0 - © 3 « (D Z * lin u. — w u. *>0 o © IL 0 •* O (A o i L a r o o o > - > » o i L * * ^ o * - f l u . - n o n 0 “) O I 0 O R^ ffl ii auj*«o 1y, o 0 0 *- II0 n *- n II - 0 0 3 •> II o o o u z 0 0 S U . O 0 0 0 U * A O 0 0 O n * * o n 0 ^ Z •a © H Z o o o o ft 0 ft O0 n n o * 0 0 *9 o o hi •a © tA O © (A O (A tA O hi ro H o o s a E X > > -1 M a* a* > M H pa o O • • ro fu • o M • ia s © hi aa a m «* c a z It « n O a o a pa z E •4 -4 > m p* H a* z O' c aa • m O pa X o • o • hi -« *a c Iff H u C • (A • ro »a •4 ro 11 C ro H «« wm tA P* m PM ♦ II tA H O • r c c m tA 4* • ♦ M z <A W -4 • u> w tA z taa (A ro *» • s* P4 o • © w o H O e> o ■t n tA (A (A O cO M O H O Vt Z C c tA II ■4 n •a a» z M c m ro «a II tA o • 0 n 44 &. ♦ (A tA aa aa tA aa aa aa aa aa u (A u Ii O tA aa c ro I tA a c. (A Z ♦ aa tA M C. tA M ♦ aa M aa M a« P4 w © o o o o © o © o © ©pa pa © o *a © © © © © © u u N hi hi hi o o © O o © o o pa pa © © © © hi hi hi hi hi hi pa a* pa pa (A u IN) m o © © *4 © o © o© © © © o O o o o o © o o o o o o o o ■a © © © © © © tA o o o © o a* pa © © pa pa pa o o © ro © © » © © o o o o © o o o o o o o o o © o o o o © © © © o N5 hO Ln 226 LtVEi. 10 15 20 25 30 35 40 45 SUBROUT|NE LlVEL (ROWY»LSR«LSL*TLL) REAL LSR.LSL IF ILSR«EO*0•) GOTO 25 IFlLSL*Ea*0«l GOTO 20 IFCLSR.LE.LSL) GOTO 10 C=4«/LSR+I»/LSL SPAN=LSL GOTO 15 C24./LSLM*/LSR SPAN=LSR P2=2«M36«-S6.*C) GOTO 35 SPANaLSR GOTO 30 SPAN-LSL P2=>2.*< 36.-336./SPAN) PI«•32*1LSR +L SL >426* P3®2« * I24*™48«/SPAN} IFIP1#GT«P21 GOTO 40 CLL3P2 GOTO 45 CLL=*P1 IF(CLL «LE*P31 CLL»P3 IF(ROWY*LT«20* 1 NL»1 IF<R0WY*GTo20.«AND«RDWY.LE«30« » NL*2 IF<RDMY*Gr.30«.AND«RDWY*LE*42*) NL*3 IF(R0MY*GT«42e»ANO«RDWY«LE* 54 • I NL-4 IF(ROMY*GT*S4« •ANO*ROYY»LE•66« 1 NL=*5 IF1ROWY«GT *66••ANOaRDMY«L£•70*> NL»6 IF <PO h Y«GT•78* «AND*ROWY«LE« 90*1 NL«7 1F(ROMY*GT«90••AND«RDMY*LE*102*) NL»8 TLL»CLL*NL RETURN END 00183200 00 K83300 00183400 00183500 00183600 00183700 00183800 00183900 00184000 00184100 00184200 00184300 00184400 00184500 00184600 00184700 00184800 00184900 00185000 00185100 00185200 00185300 00185400 00185500 00185600 00185700 00185800 00185900 00186000 00186100 00186200 00186300 00186400 00186500 227 9.2 Notation The following is a complete list of the definitions and notations used: d^ = stage decision variable; decision concerning type of deck to be selected. dn j = stage decision variable; decision concerning type of bent to be selected; j = 1,2. = stage decision variable; decision concerning allocation of available length f to span n. = minimized return function; represents the minimized cost of stage n and all downstream stages when the minimization is performed over the decision variable dn ^n,j = minimized return function; represents the minimized cost of stage (n,j) when the minimization is performed only over the decision variable d .; j = 1,2. n »J F n = minimized return function; represents the minimized cost of stage n and of the downstream stages when the minimization is performed over the decision variable D kn = 1,...,K , designate distinct values of decision variable D . n = specified minimum span length for all spans. = specified minimum span length for span n. i2) = specified maximum span length for all L = specified total bridge length. spans. n 228 N = specified total number of spans. QU = unconfined compressive strength of soil. rn = stage return; cost of the deck component in r^ = stage returns; cost of the bent component in span. span n; j = 1,2. = total return; return from span n plus the minimized returns from all of the downstream spans. sT . n, 1 = output state variable from stage n; magnitude of live and dead load transmitted to the right bent by the deck of span n. ~ Sn,2 = output state variable from stage n; magnitude of live and dead load transmitted to the left bent by the deck of span n. s io t = n-l,2,1 input state variable; dead load contributed by the downstream span deck (stage n-1) to bent (n-1,2) = (n,1). s n-1,2,2 = input state variable; live load contributed by the downstream span deck (stage n-1) to bent n-1,2) = (n,1). s n , n,l,l = input state variable; dead load contributed by the upstream span deck (stage n) to bent (n-1,2) = (n,l). s , _ n, 1,2 = input state variable; live load contributed by the upstream span deck (stage n) to bent (n-1,2) = (n,l). § , n, 1 output state variable from stage (n,1); total load transmitted to the soil by the right bent stage in span n. 229 § . = output state variable from stage (n,2); total load n,2 transmitted to the soil by the left bent stage in span n. t n u v - I,...,!1 , , designate distinct values of decision k ., n variable d • n = 1,...,U, ,t , designate distinct values of decision k n ° n variable d .. n,l n = 1.....V, , t , k k n n+1 n decision variable d n t , designate distinct values of n+1 ° n,2 = input state variable to stage n; total length which will be allocated to span n and to all spans downstream of n. Xr = output state variable from stage n; totallength left over to be allocated to spans downstream n. X (1) = specified center line location for span n. n i -(2) Xr = specified right bent location in span n. A = specified incremental span length. ^ = represents a functional relationship between two or more variables. = represents the functional relationship between the cost Pn of the deck component in span n and the variables affect ing it. n . = represents the functional relationship between the cost J of the bent component in span n and the variables affecting it; j = 1,2. 230 9.3 List of Symbols for Program Macroflow Charts Symbols used in the flowcharts conform to the International Organization for Standardization (ISO) Draft Recommendation on Flow chart Symbols for Information Processing. Following is a listing of the symbols used: Input/Output function in card medium Process input/ output Decision Predefined Process Document Any processing function; defined operation causing change in value, location of information General input/output function; information available for processing A decision switching type operation that determines which of the number of alternative path followed One or more named operations or program steps specified in a subroutine or another set of flowcharts Final output document A terminal point in a flowchart: Start, Stop, Halt, Delay, or Interrupt; may show exit from a closed subroutine. O D Conector: Exist to, or entry from another part of chart Offpage Conector: For entry to or exit from a page 10. VITA Kambiz Movassaghi was born in Mashad, Iran, on May 20, 1940. He received his elementary and secondary education at several schools in Iran. In May of 1959 he graduated from Tarbiat Secondary School in Tabriz, Iran. In February of 1960 he arrived in the United States and enrolled as a freshman in the Department of Civil Engineering at the University of Southwestern Louisiana. In May of 1963, upon obtaining a B. S. in Civil Engineering from U.S.L., he was awarded a research assistantship by the Department of Civil Engineering, Louisiana State University from where he obtained the M.S. in Civil Engineering in May 1965. In June of 1965 he was employed as a Structural Engineer by Fromherz Engineers, Consulting Engineers, and he attended Tulane Univer sity as a part time graduate student. In September of 1967 he was awarded a graduate fellowship by Tulane University where he entered as a full time student. In February of 1969 he reentered the graduate school at Louisiana State University as a research assistant, where he is now a candidate for a Doctor of Philosophy degree. 232 EXAMINATION AND THESIS REPORT Candidate: Kambiz Movassaghi Major Field: Civil Engineering Title of Thesis: Dynamic Programming Algorithm For Minimum Cost Design of Multispan Hgihway Bridges Approved: and Chairman Dean of the Graduate School EXAMINING COMMITTEE: 7 Date of Examination: November 19, 1971 7 ] ^ ^
© Copyright 2026 Paperzz