Hydrological responses of land use change from cotton (Gossypium hirsutum L.) to cellulosic bioenergy crops in the Southern High Plains of Texas, USA YONG CHEN a,b, SRINIVASULU ALE a,*, NITHYA RAJAN b, CRISTINE L.S. MORGAN b, JONGYOON PARK a a Texas A&M AgriLife Research (Texas A&M University System), Vernon, TX, USA b Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, USA. Supporting Information Table S1 Simulated management practices for cellulosic bioenergy crops in SWAT No. Operations Description Irrigated switchgrass and big bluestem (Yimam et al., 2014) 1 Fertilizer Application Parameters (May 1) FERT_ID Fertilizer ID FRT_KG Amount of fertilizer applied to HRU 2 Begin Growing Season Parameters ( Planting on May 15) 3 Auto-irrigation Parameters (Start date: May 15; End date: November 15) WSTRS_ID Water stress identifier IRR_SCA Irrigation source AUTO_WSTRS Water stress threshold IRR_EFF Irrigation efficiency 4 Harvest (only) Parameters (Harvest on November 15) Dryland switchgrass and big bluestem (Yimam et al., 2014) 1 Fertilizer Application Parameters (May 1) FERT_ID Fertilizer ID FRT_KG Amount of fertilizer applied to HRU 2 Begin Growing Season Parameters (Planting on May 15) 3 Harvest (only) Parameters (Harvest on November 15) Irrigated Miscanthus (Lewandowski and Schmidt, 2006; Danalatos et al., 2007) 1 Fertilizer Application Parameters (May 1) FERT_ID Fertilizer ID FRT_KG Amount of fertilizer applied to HRU 2 Begin Growing Season Parameters ( Planting on May 15) 3 Auto-irrigation Parameters (Start date: May 15; End date: November 15) WSTRS_ID Water stress identifier IRR_SCA Irrigation source AUTO_WSTRS Water stress threshold IRR_EFF Irrigation efficiency 4 Harvest (only) Parameters (Harvest on November 15) Dryland Miscanthus (Lewandowski and Schmidt, 2006; Danalatos et al., 2007) 1 Fertilizer Application Parameters (May 1) FERT_ID Fertilizer ID FRT_KG Amount of fertilizer applied to HRU 2 Begin Growing Season Parameters (Planting on May 15) 3 Harvest (only) Parameters (Harvest on November 15) Irrigated biomass sorghum (Yimam et al., 2014; Hao et al., 2014) 1 Fertilizer Application Parameters (May 15) FERT_ID Fertilizer ID FRT_KG Amount of fertilizer applied to HRU 2 Begin Growing Season Parameters ( Planting on Jun 1) 3 Auto-irrigation Parameters (Start date: Jun 1; End date: October 31) WSTRS_ID Water stress identifier IRR_SCA Irrigation source AUTO_WSTRS Water stress threshold IRR_EFF Irrigation efficiency 4 Harvest and Kill Parameters (Kill on October 31) Dryland biomass sorghum (Yimam et al., 2014; Hao et al., 2014) 1 Fertilizer Application Parameters (May 15) FERT_ID Fertilizer ID FRT_KG Amount of fertilizer applied to HRU 2 Begin Growing Season Parameters (Planting on Jun 1) 3 Harvest and Kill Parameters (Kill on October 31) Input data Urea 270 (kg ha-1) Default Plant Water Demand Shallow Aquifer 0.9 0.80# Default Urea 180 (kg ha-1) Default Default Urea 320 (kg ha-1) Default Plant Water Demand Shallow Aquifer 0.9 0.80 Default Urea 214 (kg ha-1) Default Default Urea 360 (kg ha-1) Default Plant Water Demand Shallow Aquifer 0.9 0.80# Default Urea 240 (kg ha-1) Default Default Table S2 Crop growth parameters for all the selected cellulosic bioenergy crops Parameter Acronym Unit Alamo Miscanthus × switchgrass# giganteus* -1 Biomass/energy ratio BIO_E [(kg ha )/(MJ 41 47 m-2)] Harvest index HVSTI [(kg ha-1)/(kg 1 0.9 ha-1)] Harvest efficiency HARVEFF NA 0.70 0.75ξ Heat units to maturity - 1800‡ 1800‡ ℃-day Maximum leaf area BLAI m2/m2 11 6 index Fraction of growing FRGRW1 NA 0.1 0.1 season coinciding with LAIMX1 First point fraction of LAIMX1 NA 0.1 0.2 BLAI for optimum growth curve Max. canopy height CHTMX m 3.5 2.5 Max root depth RDMX m 3 2.2 Fraction of growing FRGRW2 NA 0.45 0.2 season coinciding with LAIMX2 Second point fraction LAIMX2 NA 0.85 0.95 of BLAI for optimum growth curve Fraction of growing DLAI NA 1.1 0.7 season when leaf area starts declining Optimal temperature T_OPT °C 25 25 Min temperature T_BASE °C 8 12 Fraction of nitrogen CNYLD (Kg N)/(Kg 0.0035 0.016 in harvested biomass yield) Fraction of CPYLD (Kg P)/(Kg 0.0003 0.0022 phosphorus in yield) harvested biomass Fraction of nitrogen BN1 (Kg N)/(Kg 0.01 0.035 in plant at emergence biomass) Fraction of nitrogen BN2 (Kg N)/(Kg 0.0065 0.015 in plant at 0.5 biomass) maturity Fraction of nitrogen BN3 (Kg N)/(Kg 0.0057 0.0038 in plant at maturity biomass) Fraction of BP1 (Kg P)/(Kg 0.0016 0.0014 phosphorus in plant biomass) at emergence Fraction of BP2 (Kg P)/(Kg 0.0012 0.001 phosphorus in plant biomass) at 0.5 maturity Fraction of BP3 (Kg P)/(Kg 0.0009 0.0007 phosphorus in plant biomass) at maturity Lower limit of WSYF [(kg ha-1)/(kg 1 0.9 harvest index ha-1)] Big bluestem# 14 Biomass sorghum# 33.5 0.9 0.9 0.75ξ 1800‡ 3 -1295‡ 4 0.05 0.15 0.1 0.05 1 2 0.25 1.5 2 0.5 0.7 0.95 0.35 0.64 25 12 0.016 30 11 0.0199 0.0022 0.0032 0.02 0.044 0.012 0.0164 0.005 0.0128 0.0014 0.006 0.001 0.0022 0.0007 0.0018 0.9 0.9 Min crop factor for water erosion Max stomatal conductance Vapor pressure deficit GSI fraction corresponding to the second point on the stomatal conductance curve Rate of decline in RUE due to increase in vapor pressure deficit Biomass-energy ratio corresponding to the 2nd point on the radiation use efficiency curve Minimum LAI for plant during dormant period Light extinction coefficient Root fraction at emergence Root fraction at maturity SCS runoff curve numbers USLE_C NA 0.003 0.003 0.003 0.2 GSI m/s 0.005 0.005 0.005 0.005 VPDFR kPa 4 4 4 4 FRGMAX NA 0.75 0.75 0.75 0.75 WAVP NA 8.5 8.5 10 8.5 BIOEHI NA 54 (existing Alamo switchgrass value)** 54 39 36 ALAI_MIN m2/m2 0 0 0 0 EXT_COEF NA 0.55 0.33 0.36 0.65 RFR1C NA 0.87 0.4 0.4 0.4 RFR2C NA 0.18 0.2 0.2 0.2 A, B, C, D NA 31, 59, 72, 79 31, 59, 72, 79 31, 59, 72, 79 67, 77, 83, 87 (existing Alamo switchgrass value)** * Crop parameters obtained from Trybula et al. (2014) field study # The default values in the SWAT 2012 crop database or management files **We used the existing Alamo switchgrass parameters for Miscanthus × giganteus ξ We used the harvest efficiency value of Shawnee switchgrass obtained from Trybula et al. (2014) field study for the Alamo switchgrass and big bluestem ‡ Heat units to maturity for Miscanthus × giganteus, Alamo switchgrass, big bluestem, and biomass sorghum were estimated using the SWAT-PHU program (http://swat.tamu.edu/software/potential-heat-unit-program/) Fig. S1 Comparison of observed and simulated monthly streamflow at Gauge I during the model a) calibration and b) validation periods. Fig. S2 Comparison of observed and simulated monthly streamflow at Gauge II during the model a) calibration and b) validation periods. References Danalatos NG, Archontoulis SV, Mitsios I (2007) Potential growth and biomass productivity of Miscanthus×giganteus as affected by plant density and N-fertilization in central Greece. Biomass and Bioenergy, 31, 145-152. Hao BZ, Xue QW, Bean BW, Rooney WL, Becker JD (2014) Biomass production, water and nitrogen use efficiency in photoperiod-sensitive sorghum in the Texas High Plains. Biomass and Bioenergy, 62, 108-116. Lewandowski I, Schmidt U (2006) Nitrogen, energy and land use efficiencies of miscanthus, reed canary grass and triticale as determined by the boundary line approach. Biomass and Bioenergy, 112, 335-346. Trybula EM, Cibin R, Burks JL, Chaubey I, Brouder SM, Volenec JJ (2014) Perennial rhizomatous grasses as bioenergy feedstock in SWAT: parameter development and model improvement. Global Change Biology Bioenergy, doi: 10.1111/gcbb.12210 Yimam YT, Ochsner TE, Kakani VG, Warren JG (2014) Soil moisture dynamics and evapotranspiration under annual and perennial bioenergy crops. Soil Science Society of America Journal, 78, 1584-1592.
© Copyright 2025 Paperzz