Weibull PIA Weibull KTA mod Weibull CEA mod ASME Failure Assessment Validation Exercise VP-01 Bending to Tensile x x x VP-02 Rectangular Notched Tensile Specimen x x x x x Yves Lejeail VP-06 L-shaped Specimen 07-09, February 2007 Lyon, France ASME Failure Assessment Validation Exercise Hypotheses (1) 1 s m Ps exp s 0 dv V0 Vtot Weibull uniaxial Weibull PIA: replace sm above by s éqm s Im s IIm s IIIm Weibull KTA mod : replace s above by s if si>0 s s S s s if si<0 S eqMSE i i i i s 12 s 22 s 32 2 (s 1s 2 s 2s 3 s 1s 3 ) t c Weibull CEA mod mS 1 s s * exp 1 Ps( structure) exp dv V S Vos Vtot s 0 S Vov Vtot s 0V v + s = 1 07-09, February 2007 Lyon, France mV dv ASME Failure Assessment Validation Exercise Hypotheses (2) No Volume effect taken into account V0=Vtot (1 type of defect) V0s=V0v=Vtot (2 types of defect) Why ? - No data - Time constraint - No large effects in experiments (theory seems to overestimate this effect) But… Interest in case of several type of defects (more control on the analyses) 07-09, February 2007 Lyon, France ASME Failure Assessment Validation Exercise Hypotheses (3) Further with the Weibull CEA mod • Surface defects and volume defects are in two separate regions s éq 1 Ps exp VS Vv V s 0 S S s éq 1 dv V V S v VV s 0V mS mV dv • These defects come from fabrication including machining (heat, forces,…) • Parametric studies to look at the influence of the parameters (no experimental data) 07-09, February 2007 Lyon, France ASME Failure Assessment Validation Exercise VP-01 Bending to tensile Classical formulas from Weibull uniaxial (assuming s=0 if s<0) Maximum bending stress must be less than: Sb = (2(m+1))1/mSm Sb3 pt (m 1) Sb 4 pt 2 1/ m Sb Sm 2(m 1) 1/ m 2 1/ m 2(m 1) 2(m 1) Sb S m m2 m2 1/ m Equal survival prob. between tensile and bending 07-09, February 2007 Lyon, France ASME Failure Assessment Validation Exercise flexion 3 points et 4 points Bending material limits from Weibull 4,0 Sb/Sm Sf/St flexion 3pts 3 pts flexion 4pts 4 pts 3,0 pure pure flexion 2,0 1,0 0 5 10 m 15 20 25 • Note that it is possible to apply a more general rule following Weibull initial equation and the Loading factor Lmax 1 Vtot Vto t s éq s éq max 07-09, February 2007 m dV Lyon, France ASME Failure Assessment Validation Exercise Two possible approaches for design, with the same Weibull initial equation 1,20 1,00 E1/ Peq is a result of a projection on the characterization curve and can be compared to Sm Characterization Specimen Structure 1/ m PR 0,80 1 Peq s eqm dV V0 V 0,60 s T s eq max V V0 1/ m Lmax 1 / m < Sm E2/ The maximum local Stress is compared to a modified Sm 0,40 0,20 1/ m Sm Allowable Stress of the Material s eq max 0,00 0,0000 0,2000 0,4000 0,6000 0,8000 1,0000 1,2000 1,4000 1,6000 s/s 0 07-09, February 2007 1/ m V V Sm 0 sT 0 V V Lmax 1 / m Lmax 1 / m Lyon, France ASME Failure Assessment Validation Exercise VP-01 Weibull CEA mod Ls H • ms, mv, s0s, s0v imposed build the Weibull curve of the specimen • determine the effect of Ls/H , and compare between tension and (pure) bending • definition of apparent Weibull parameters 07-09, February 2007 Lyon, France ASME Failure Assessment Validation Exercise Matrix of the study • ms=50 , mv=5, sos = 35 MPa sov = 10 MPa sov = 25 MPa sov = 33 MPa • ms=5, mv=50, sos = 35 MPa sov = 10 MPa sov = 25 MPa sov = 33 MPa • ms=10, mv=20, sos = 33 MPa, sov = 35 MPa 07-09, February 2007 Lyon, France ASME Failure Assessment Validation Exercise ms=50 , mv=5, sos = 35 MPa, sov = 10 MPa Pure bending Flexion pure mv = 5 Sos = 35 MPa 1,2 1 Ls = 0 mm 0,8 Ls = 0,5 mm Ls = 1 mm 0,6 Ls = 1,5 mm Ls = 2 mm 0,4 Ls = 2.46 mm Lv = 0.02 micron 0,2 Ls = 2,5 mm 0 0 10 20 -0,2 30 40 the structure probability Survivalprobabilité de survieof de l'éprouvette structure probability Survival Probabilité de survieof de the l'éprouvette Sos = 35 Mpa tension Traction simple Sov = 10 Mpa ms = 50 contrainte (MPa) Stress (MPa) Sov = 10 MPa ms = 50 1 0,9 0,8 0,7 Ls = 0 mm Ls = 0,5 mm 0,6 Ls = 1 mm 0,5 Ls = 1,5 mm Ls = 1,8 mm 0,4 Ls = 2 mm Ls = 2,5 mm 0,3 0,2 0,1 0 5 10 15 20 25 30 contrainte (MPa) Stress (MPa) 07-09, February 2007 mv = 5 Lyon, France 35 40 45 ASME Failure Assessment Validation Exercise ms=50 , mv=5, sos = 35 MPa, sov = 10 MPa 60 50 40 ms mv m apparent 30 20 10 modulus Weibull module de Weibull Weibull modulus modules de Weibull 50 40 ms 30 mv m app 20 10 0 0 0 0,2 0,4 0,6 0,8 1 0 1,2 0,2 0,4 0,8 1 1,2 45 35 30 Sos Sov So apparent 25 20 15 cointrainte de Weibull 40 Weibull stress (MPa) 45 stress Weibull de contraintes Weibull (MPa) 0,6 Ls/H 2Ls/H Ls/H 2Ls/H 40 35 30 Sos Sov 25 So app 20 10 15 5 10 0 0 0,2 0,4 0,6 0,8 1 1,2 0 Ls/H 2Ls/H 0,2 0,4 0,6 0,8 Ls/H 2Ls/H 07-09, February 2007 Lyon, France 1 1,2 ASME Failure Assessment Validation Exercise ms=5 , mv=50, sos = 35 MPa, sov = 25 MPa Pure Flexion bending pure Sos = 35 MPa 1 0,9 0,8 Ls = 0 mm Ls = 0,06 mm Ls = 0,5 mm Ls = 1 mm Ls = 1,5 mm Ls = 2 mm Ls = 2,4 mm Ls = 2.4998 Ls = 2,5 mm 0,7 0,6 0,5 0,4 0,3 0,2 0,1 0 5 15 25 35 45 55 probability of the structure Survival probabilité de survie de l'éprouvette probability of the structure Survival Probabilité de survie de l'éprouvette tension Traction Simple Sos = 35 MPa Sov = 25 MPa ms = 5 mv = 50 contrainte (MPa) Stress (MPa) Sov = 25 MPa 1 0,9 0,8 0,7 Ls = 0 mm Ls = 0.3 mm 0,6 Ls = 0,5 mm 0,5 Ls = 1 mm Ls = 1,5 mm 0,4 Ls = 2 mm Ls = 2,5 mm 0,3 0,2 0,1 0 20 30 40 50 60 Stress (MPa) contrainte (MPa) 07-09, February 2007 ms = 5 mv = 50 Lyon, France 70 80 ASME Failure Assessment Validation Exercise ms=5 , mv=50, sos = 35 MPa, sov = 25 MPa 60 55 45 40 ms 30 mv mapparent 20 10 modulus Weibull module de Weibull Weibull modulus modules de Weibull 50 0 0,2 0,4 2Ls/H Ls/H 0,6 0,8 mv m app 15 -5 0 1 36 0,2 0,4 0,6 2Ls/H Ls/H 0,8 1 1,2 34 32 Sos 30 Sov So apparent 28 26 Weibull stress (MPa) 60 contrainte de Weibull (MPa) Weibull stress (MPa) ms 25 5 0 contraintes de Weibull 35 55 50 45 Sos 40 Sov So app 35 30 25 20 24 0 0,2 0,4 0,6 2Ls/H 0,8 1 0 Ls/H 07-09, February 2007 0,2 0,4 0,6 Ls/H 2Ls/H 0,8 Lyon, France 1 1,2 ASME Failure Assessment Validation Exercise VP-01 Weibull CEA mod (conclusions) Ls H • the apparent Weibull parameters may vary with the surface thickness layer • as expected, this variation is favoured in case of bending • if thickness of layer depends on machining Parameters size effect again even if volume effect is neglected 07-09, February 2007 Lyon, France ASME Failure Assessment Validation Exercise VP-02 Rectangular Notched Tensile Specimen Some preliminary remarks on Schmidt’s document • No material indicated for this case, from where comes the Weibull law used to interpret the experiments? To validate a design approach it is necessary to take the results of characterization to interpret component’s tests • How many tests performed to determine the mean load to rupture? 07-09, February 2007 Lyon, France ASME Failure Assessment Validation Exercise Description of the model P Other details r • 2D plane stress hypothesis • Total load = 11kN 5.5 kN here • E = 6500 MPa = 0.15 • post-treatment for Weibull analysis build the whole curve(s) • Ls=0.3 mm and Ls=5 mm View of a typical mesh (9000 elements for Ls=5mm) Loading conditions 07-09, February 2007 Lyon, France ASME Failure Assessment Validation Exercise Mean experimental Values of Fracture Loads (N) Survival probability radius Probabilités de survie for pourdifferent les différents rayons d'entaille m=12, s0=17.7MPa 100,00% 90,00% 80,00% Ps r=20mm Probabilité 70,00% R = 20 mm R = 50 mm R = 75 mm R = 100 mm R = 120 mm R = 150 mm Traction Simple 60,00% 50,00% 40,00% 30,00% 20,00% 10,00% Von Mises stress 0,00% 7000 9000 11000 13000 Charge (N) Load(N) 07-09, February 2007 Lyon, France 15000 ASME Failure Assessment Validation Exercise m=12, s0=17.7MPa Survival Probability R = 20 mm 100,00% Surface Volume Total 90,00% 80,00% 70,00% 50,00% 40,00% 30,00% 20,00% 10,00% 0,00% 0 2000 4000 6000 8000 10000 12000 14000 Load (N) Ls=5mm 90,00% 80,00% 70,00% 60,00% 50,00% 40,00% 30,00% 20,00% 10,00% 0,00% 10,00 15,00 80,00% 70,00% 60,00% 50,00% 40,00% 30,00% 10,00% 0,00% 6000 Surface Volume Total 7000 8000 9000 10000 11000 12000 25,00 30,00 R = 150 mm 90,00% 20,00% 20,00 Stress (MPa) Contrainte (MPa) Survival Probability R = 150 mm 100,00% Proba 100,00% 13000 14000 Load (N) 07-09, February 2007 the structure Survival probability Probabilitéof de survie Proba 60,00% Probabilité of de survie the structure Survival probability R = 20 mm 35,00 40,00 Ls=0.3mm 100,0% 90,0% 80,0% 70,0% 60,0% 50,0% 40,0% 30,0% 20,0% 10,0% 0,0% 10,00 15,00 20,00 25,00 Stress (MPa) Contrainte (MPa) Lyon, France 30,00 35,00 40,00 ASME Failure Assessment Validation Exercise As we have obtained the same results with PIA and MSE for this study (as in others), we will apply MSE in all the others calculations As a reminder, for an homogeneous stress state : (m=15) Tube with a temperature gradient in the thickness Tube with internal pressure 07-09, February 2007 Lyon, France ASME Failure Assessment Validation Exercise Application of the Weibull CEA mod Calculation Cases for r=20 mm and r=150 mm, Ls = 0.3mm Sos Sov 17,7 35 35 35 35 33 33 33 33 25 25 25 25 10 10 10 10 ms 17,7 33 33 33 33 35 35 35 35 35 35 35 35 35 35 35 35 mv 12 5 10 20 50 5 10 20 50 5 10 20 50 5 10 20 50 12 50 20 10 5 50 20 10 5 50 20 10 5 50 20 10 5 This is a sensitivity study, nothing more 07-09, February 2007 Lyon, France ASME Failure Assessment Validation Exercise Survival probability R = 20 mm, Ls = 0,3 mm Sos = 25 MPa Sov = 35 MPa ms = 20 mv = 10 Survival probability R = 20 mm, Ls = 0,3 mm Sos = 35 MPa Sov = 33 MPa ms = 50 mv = 5 100,00% 100,00% 90,00% 90,00% 80,00% 80,00% 70,00% 70,00% 60,00% Proba Proba 60,00% 50,00% 40,00% 50,00% 40,00% 30,00% 30,00% Surface Volume 20,00% Total Tensile 10,00% Volume Total 10,00% Tensile Bending Bending 0,00% 0,00 10,00 20,00 30,00 40,00 0,00% 0,00 50,00 Surface 20,00% 5,00 10,00 15,00 20,00 Stress (MPa) Survival probability R = 20 mm, Ls = 0,3 mm Sos = 35 MPa Sov = 33 MPa ms = 20 mv = 10 100,00% 90,00% 80,00% 80,00% 70,00% 70,00% 40,00% 45,00 50,00 50,00% 40,00% Surface 30,00% Volume Total 20,00% Tensile 10,00% Bending 0,00% 0,00 40,00 60,00% 50,00% Proba Proba 60,00% 10,00% 35,00 Survival probability R = 20 mm, Ls = 0,3 mm 90,00% 20,00% 30,00 Sos = 10 MPa Sov = 35 MPa ms = 10 mv = 20 100,00% 30,00% 25,00 Stress (MPa) 10,00 20,00 30,00 40,00 50,00 60,00 70,00 80,00 Stress (MPa) 07-09, February 2007 0,00% 0,00 Surface Volume Total Tensile Bending 5,00 10,00 15,00 20,00 Stress (MPa) Lyon, France 25,00 30,00 35,00 40,00 ASME Failure Assessment Validation Exercise An example of a curve for r=150 mm, Ls = 0.3mm Comparison of the apparent curves Survival Probability Sos = 33 MPa 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% 0,00 Sov = 35 Mpa ms = 50 mv = 5, Ls=0.3 mm R = 20 mm R = 150 mm Tensile Pure Bending 10,00 20,00 30,00 40,00 Stress (MPa) 50,00 The influence of the surface defects is less important but the r=150 mm results are significantly different from pure tensile specimens 07-09, February 2007 Lyon, France ASME Failure Assessment Validation Exercise VP-02 Weibull and Weibull CEA mod (conclusions) • See the preliminary remarks about the Weibull parameters and what is necessary to validate a design rule • Again, it may be possible to explain the different apparent Weibull parameters for different structures with (at least) two populations of defects 07-09, February 2007 Lyon, France ASME Failure Assessment Validation Exercise VP-06 Weibull and Weibull CEA mod L L L L L L •Study of the 4 points bending •Study of the L shaped specimens, with Ls=0.2 mm and Ls=2 mm • No PIA 07-09, February 2007 Lyon, France ASME Failure Assessment Validation Exercise Study of the 4 points bending •Loadings •A special methodology to represent the support 400N A B1 B2 M1 SsH1 Ai SsH2 Ci M2 Sv1 Fi Sv2 M3 SsB1 F C Di SsB2 M4 07-09, February 2007 E D Lyon, France ASME Failure Assessment Validation Exercise mesh Von Mises Equivalent Stresses 07-09, February 2007 Lyon, France ASME Failure Assessment Validation Exercise For Ls=0.2 mm: ms=15 , mv=8, sos = 23.7 MPa, sov = 23 MPa ms=8 , mv=15, sos = 19.8 MPa, sov = 24.6 MPa For Ls=2 mm: ms=15 , mv=8, sos = 25.3MPa, sov = 16.6 MPa ms=8 , mv=15, sos = 23.6 MPa, sov = 18 MPa Comparison of calculations with experiments (4points loadings) 1 0,9 Survival probability 0,8 0,7 0,6 0,5 0,4 0,3 0,2 0,1 0 400 Psurvie expérimentale Weibull2 (ms=8 ; mv=15) Weibull2 (ms=15 ; mv=8) Weibull1 (m=12) Weibull1 (m=15) 600 800 1000 Load (N) 07-09, February 2007 Lyon, France ASME Failure Assessment Validation Exercise A Bi L specimens : B D Di C E Ei Cote 5 O Figure 6 : modèle utilisé 07-09, February 2007 Von Mises Stresses Lyon, France ASME Failure Assessment Validation Exercise R = 2 mm and Ls = 2 mm R = 2 mm and Ls = 0,2 mm Some results of Von Mises Stresses (a mesh size study has been performed) 07-09, February 2007 Lyon, France ASME Failure Assessment Validation Exercise L specimens : some curves compared to experiments for Ls = 0.2mm ms=8 ; sos=19.8MPa ; mv=15 ; sov=24.6MPa R = 4 mm R = 2 mm 100,00% 100,00% 90,00% 90,00% 80,00% 80,00% 70,00% Probabilité Psurvie Surface 60,00% Psurvie Volume 50,00% Psurvie Eprouvette 40,00% expérience Psurvie Surface 60,00% Psurvie Volume 50,00% Psurvie Eprouvette 40,00% 30,00% 30,00% 20,00% 20,00% 10,00% 10,00% 0,00% Psurvie 0,00% 250 350 450 550 650 750 850 250 350 450 Charge (N) 550 650 750 850 Charge (N) R = 1 mm 100,00% 90,00% 80,00% 70,00% Probabilité Probabilité 70,00% Psurvie Surface 60,00% Psurvie Volume 50,00% Psurvie Eprouvette 40,00% expérience 30,00% 20,00% 10,00% 0,00% 250 350 450 550 650 750 850 Charge (N) 07-09, February 2007 Lyon, France ASME Failure Assessment Validation Exercise VP-06 Weibull and Weibull CEA mod (conclusions) Some material variations found in the experiments difficult to account for Some Weibull parameters applied to 4 points bending then to L specimens (1 or 2 kind of defects) seems better with 2 type of defects but the parameters were not optimized possibility to take in account the volume effect of the two population of defects is it interesting to optimize without experimental validations ? (i.e. microscopic examinations of the cracks leading to the rupture) 07-09, February 2007 Lyon, France ASME Failure Assessment Validation Exercise CEA Cadarache general conclusions about the benchmark • Difficult to find all the consistent experimental datas (some are missing) • Microscopic examinations are missing materials are unknown • For the design it must be shown that a stress to initiation in a structure is related to a stress to initiation in another • A special care should be taken for manufacturing and machining to develop a design method • Concerning the Weibull laws (2 type of populations), it should be possible to better adjust several type of tests but what about the physical meaning? if a Weibull law fails to represent different experiments, is there something simple and better? 07-09, February 2007 Lyon, France
© Copyright 2026 Paperzz