Random Variables and Stochastic Processes – 0903720 Dr. Ghazi Al Sukkar Email: [email protected] Office Hours: Refer to the website Course Website: http://www2.ju.edu.jo/sites/academic/ghazi.alsukkar 1 Chapter 5 Functions of one Random Variable The Random Variable 𝒈(𝑿) Distribution Function of 𝒈(𝑿) The Density Function of 𝒈(𝑿) The Inverse Problem 2 The Random Variable 𝑔(𝑋) 𝜁1 S 𝜁2 𝜁4 𝑋(𝜁2 ) 𝑋(𝜁4 ) 𝜁3 𝑋(𝜁3 ) 𝑋(𝜁1 ) ℝ 𝑌 = 𝑔(𝑋) ℝ • A random variable is a mapping from the sample space to the set of real numbers. • Let 𝑋 be a R.V. • Suppose 𝑔(𝑥) is a function of the real variable 𝑥. • Then 𝑌 = 𝑔(𝑋) is a new random variable. 3 The R.V. 𝑌 = 𝑔(𝑋) • Since 𝑋 is a R.V. then X(𝜁) is a number. • 𝑔 X(𝜁) is another number specified in terms of X(𝜁) and 𝑔(𝑥). • This number is the value 𝑌 𝜁 = 𝑔 X(𝜁) assigned to the R.V. 𝑌. ⟹ A function of a R.V. 𝑋 is a composite function 𝑌 = 𝑔 𝑋 = 𝑔 X(𝜁) with domain the set 𝑆. 4 Distribution Function of 𝒈(𝑿) • • • • Let 𝑋 be a R.V. with CDF 𝐹𝑋 𝑥 = 𝑃 𝑋 𝜁 ≤ 𝑥 . 𝑌 = 𝑔(𝑋), 𝐹𝑌 𝑦 =? 𝐹𝑌 𝑦 = 𝑃 𝑌 ≤ 𝑦 = 𝑃 𝑔(𝑋) ≤ 𝑦 The event 𝑌 ≤ 𝑦 consists of all outcomes 𝜁 such that 𝑌 𝜁 = 𝑔 X(𝜁) ≤ 𝑦. • For a specific 𝑦, the values of 𝑥 such that 𝑔(𝑥) ≤ 𝑦 form a set on the 𝑥 axis denoted by 𝑅𝑦 . • 𝑔 X(𝜁) ≤ 𝑦 if X(𝜁) is a number in the set 𝑅𝑦 ⟹ 𝐹𝑌 𝑦 = 𝑃 𝑋 ∈ 𝑅𝑦 . 5 𝑔(𝑥) 𝑏 Case1: General Idea • Let 𝑎 < 𝑔(𝑥) < 𝑏. • If 𝑦 ≥ 𝑏, 𝑔 𝑥 ≤ 𝑦, ∀𝑥 ⇒𝑃 𝑌≤𝑦 =1 • If 𝑦 < 𝑎, no 𝑥 such that 𝑔 𝑥 ≤ 𝑦 ⇒ 𝑃 𝑌 ≤ 𝑦 =0 𝑦1 𝑦2 𝑥21 𝑥22 𝑥23 𝑥1 𝑎 1, 𝑦 ≥ 𝑏 • 𝐹𝑌 𝑦 = 0, 𝑦 < 𝑎 • For 𝑦1 = 𝑔(𝑥1 ), 𝑔 𝑥 ≤ 𝑦1 for 𝑥 ≤ 𝑥1 ⇒ 𝐹𝑌 𝑦1 = 𝑃 𝑌 ≤ 𝑦1 = 𝑃 𝑋 ≤ 𝑥1 = 𝐹𝑋 𝑥1 • For 𝑦2 = 𝑔 𝑥21 = 𝑔 𝑥22 = 𝑔(𝑥23 ), 𝑔 𝑥 ≤ 𝑦2 , if 𝑥 ≤ 𝑥21 or 𝑥22 ≤ 𝑥 ≤ 𝑥23 . ⇒ 𝐹𝑌 𝑦2 = 𝑃 𝑌 ≤ 𝑦2 = 𝑃 𝑋 ≤ 𝑥21 + 𝑃 𝑥22 ≤ 𝑥 ≤ 𝑥23 6 = 𝐹𝑋 𝑥21 + 𝐹𝑋 𝑥23 − 𝐹𝑋 𝑥22 𝑥 Example • 𝑌 = 𝑎𝑋 + 𝑏 ⇒ 𝑔 𝑥 = 𝑎𝑥 + 𝑏 Sol.: • if 𝑎 > 0, then 𝑔(𝑥) ≤ 𝑦 for 𝑥 ≤ 𝑦 − 𝑏 𝑎 ⇒ 𝐹𝑌 𝑦 = 𝑃 𝑌 ≤ 𝑦 = 𝑃 𝑋 ≤ 𝑔(𝑥) 𝑦 (𝑦 − 𝑏)/𝑎 7 𝑥 • if 𝑎 < 0, then 𝑔(𝑥) ≤ 𝑦 for 𝑥 > 𝑦 − 𝑏 𝑎 ⇒ 𝐹𝑌 𝑦 = 𝑃 𝑌 ≤ 𝑦 = 𝑃 𝑋 > 𝑔(𝑥) 𝑦 (𝑦 − 𝑏)/𝑎 8 𝑥 Example • 𝑌 = 𝑋2, ⟹ 𝑔 𝑥 = 𝑥 2 • For 𝑦 < 0, no 𝑥 such that 𝑔(𝑥) ≤ 𝑦 ⟹ 𝐹𝑌 𝑦 = 𝑃 𝑌 ≤ 𝑦 = 0, 𝑦 < 0 • For 𝑦 ≥ 0, 𝑔(𝑥) ≤ 𝑦 for − 𝑦 ≤ 𝑥 ≤ + 𝑦 ⟹ 𝐹𝑌 𝑦 = 𝑃 𝑌 ≤ 𝑦 = 𝑃 − 𝑦 ≤ 𝑥 ≤ 𝑔 𝑥 = 𝑥2 𝑦 𝑥2 = − 𝑦 𝑥1 = + 𝑦 𝑥 9 • 𝑓𝑌 𝑦 = 1 2 𝑦 𝑓𝑋 𝑑𝐹𝑌 𝑦 𝑑𝑦 = 𝑦 + 𝑓𝑋 − 𝑦 ,𝑦 ≥ 0 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 • If 𝑓𝑋 𝑥 is an event function (e.g. Normal distribution), i.e. 𝑓𝑋 𝑥 = 𝑓𝑋 −𝑥 • ⟹ 𝑓𝑌 𝑦 = 1 𝑓𝑋 𝑦 𝑦 𝑈(𝑦), where 1, 𝑦 > 0 𝑈 𝑦 = is the unit step function. 0, 𝑦 < 0 10 In particular if 𝑋~𝑁(0,1) ⟹ 𝑓𝑋 𝑥 = 1 −𝑥 2 2 𝑒 2𝜋 2 • Then for 𝑌 = 𝑋 𝑓𝑌 𝑦 = 1 𝑓𝑋 𝑦 𝑦 𝑈 𝑦 = 1 2𝜋𝑦 𝑒 −𝑦 2 𝑈(𝑦) Which is the distribution of Chi-square R.V. with 𝑛 = 1. • ⟹ if 𝑋~𝑁(0,1) is Normal R.V. then 𝑋 2 is Chi-square R.V. with one degree of freedom. 11 In particular if 𝑋~𝑈(−1,1) 𝐹𝑋 𝑥 = 1 𝑥 + , 2 2 ⟹ 𝐹𝑌 𝑦 = 𝑥 <1 1, 𝑦 > 1 𝑦, 0 ≤ 𝑦 ≤ 1 0, 𝑦 < 0 12 Case2: 𝑔(𝑥) is constant in an interval 𝑥0 , 𝑥1 . ⟹ 𝑔 𝑥 = 𝑚, 𝑥0 ≤ 𝑥 ≤ 𝑥1 Then 𝑃 𝑌 = 𝑚 = 𝑃 𝑥0 ≤ 𝑥 ≤ 𝑥1 = 𝐹𝑋 𝑥1 − 𝐹𝑋 𝑥0 • ⟹ 𝐹𝑌 𝑦 is discontinuous at 𝑦 = 𝑚 and its discontinuity equal 𝐹𝑋 𝑥1 − 𝐹𝑋 𝑥0 𝑔(𝑥) 𝑚 𝑥0 𝑥1 𝑥 13 Example • 𝑌 = 𝑔(𝑋) g (x) c 𝑥 − 𝑐, 𝑥 > 𝑐 • 𝑔 𝑥 = 0, −𝑐 ≤ 𝑥 ≤ 𝑐 𝑥 + 𝑐, 𝑥 < −𝑐 x c ⟹ 𝐹𝑌 𝑦 is discontinuous at 𝑦 =0, 𝐹𝑌 0 = 𝐹𝑋 𝑐 − 𝐹𝑋 −𝑐 • For 𝑦 > 0, 𝑥 > 𝑐, then 𝑔(𝑥) ≤ 𝑦, 𝑥 ≤ 𝑦 + 𝑐 ⟹ 𝐹𝑌 𝑦 = 𝑃 𝑌 ≤ 𝑦 = 𝑃 𝑋 ≤ 𝑦 + 𝑐 = 𝐹𝑋 (𝑦 + 𝑐) • For 𝑦 < 0, 𝑥 < −𝑐, then 𝑔(𝑥) ≤ 𝑦, 𝑥 ≤ 𝑦 − 𝑐 ⟹ 𝐹𝑌 𝑦 = 𝑃 𝑌 ≤ 𝑦 = 𝑃 𝑋 ≤ 𝑦 − 𝑐 = 𝐹𝑋 (𝑦 − 𝑐) • 𝑓𝑌 𝑦 = 𝑓𝑋 𝑦 + 𝑐 , 𝑦 > 0 𝐹𝑋 𝑐 − 𝐹𝑋 −𝑐 𝛿 𝑦 , 𝑦 = 0 𝑓𝑋 𝑦 −1𝑐 F, (x 𝑦) < 0 X -c c x FY ( y ) 1 y 14 Example : Half-wave rectifier Y g ( X ); x, g ( x) 0, x 0, x 0. Y In this case X P (Y 0) P ( X ( ) 0) FX (0). and for y 0, since Y X , FY ( y ) PY ( ) y P X ( ) y FX ( y ). Thus y 0, f X ( y ), fY ( y ) FX (0) ( y ) y 0, 0, y 0, f X ( y )U ( y ) FX (0) ( y ). 15 Case3: 𝑔(𝑥) is a staircase function. • 𝑔 𝑥 = 𝑔 𝑥𝑖 = 𝑦𝑖 , 𝑥𝑖−1 < 𝑥 ≤ 𝑥𝑖 ⟹ 𝑌 = 𝑔(𝑋) is discrete type R.V. with 𝑃 𝑌 = 𝑦𝑖 = 𝑃 𝑥𝑖−1 < 𝑋 ≤ 𝑥𝑖 = 𝐹𝑋 𝑥𝑖 − 𝐹𝑋 𝑥𝑖−1 𝑔(𝑥) 𝑦𝑖 𝑥𝑖−1 𝑥𝑖 16 Example: Quantizer • 𝑔 𝑥 = 𝑛𝑠, 𝑛 − 1 𝑠 < 𝑥 ≤ 𝑛𝑠, 𝑛 ∈ ℤ • 𝑌 = 𝑔(𝑋), is discrete type that takes the values 𝑦𝑛 = 𝑛𝑠 with: • 𝑃 𝑌 = 𝑛𝑠 = 𝑃 𝑛 − 1 𝑠 < 𝑥 ≤ 𝑛𝑠 = 𝐹𝑋 𝑛𝑠 − 𝐹𝑋 𝑛 − 1 𝑠 17 Case4: 𝑔(𝑥) is discontinuous at x = x0 and 𝑔 𝑥 < 𝑔 𝑥0− , 𝑓𝑜𝑟 𝑥 < 𝑥0 , 𝑔 𝑥 > 𝑔 𝑥0+ , 𝑓𝑜𝑟 𝑥 > 𝑥0 + − • For 𝑔 𝑥0 ≤ 𝑦 ≤ 𝑔 𝑥0 , 𝑔 𝑥 ≤ 𝑦, for 𝑥 ≤ 𝑥0 . ⟹ 𝐹𝑌 𝑦 = 𝑃 𝑋 ≤ 𝑥0 = 𝐹𝑋 𝑥0 , 𝑔 𝑥0− ≤ 𝑦 ≤ 𝑔 𝑥0+ 18 𝑔(𝑥) Example 𝑥 + 𝑐, 𝑥 ≥ 0 • 𝑔 𝑥 = 𝑥 − 𝑐, 𝑥 < 0 • 𝑔(𝑥) is discontinuous at 𝑥 = 0 𝑔 0− = −𝑐, 𝑔 0+ = 𝑐 • If 𝑦 ≥ 𝑐, 𝑔(𝑥) ≤ 𝑦 for 𝑥 ≤ 𝑦 − 𝑐 ⟹ 𝐹𝑌 𝑦 = 𝑃 𝑋 ≤ 𝑦 − 𝑐 = 𝐹𝑋 (𝑦 − 𝑐) • If 𝑦 ≤ −𝑐, 𝑔(𝑥) ≤ 𝑦 for 𝑥 ≤ 𝑦 + 𝑐 ⟹ 𝐹𝑌 𝑦 = 𝑃 𝑋 ≤ 𝑦 + 𝑐 = 𝐹𝑋 (𝑦 + 𝑐) • If −𝑐 ≤ 𝑦 ≤ 𝑐, 𝑔(𝑥) ≤ 𝑦 for 𝑥 ≤ 0 ⟹ 𝐹𝑌 𝑦 = 𝑃 𝑋 ≤ 0 = 𝐹𝑋 (0) 𝑐 𝑥 −𝑐 𝐹𝑋 (𝑥) 𝑐 𝑥 −𝑐 𝐹𝑌 (𝑦) 𝑐 𝑦 −𝑐 19 Case5: 𝑋 is discrete type R.V. takes the values 𝑥𝑘 with probability 𝑝𝑘 , then Y = 𝑔(𝑋) is also discrete type R.V. taking the values 𝑦𝑘 = 𝑔(𝑥𝑘 ). • If 𝑦𝑘 = 𝑔(𝑥) for only one 𝑥 = 𝑥𝑘 . ⟹ 𝑃 𝑌 = 𝑦𝑘 = 𝑃 𝑋 = 𝑥𝑘 = 𝑝𝑘 • If 𝑦𝑘 = 𝑔(𝑥) for 𝑥 = 𝑥𝑘 and 𝑥 = 𝑥𝑙 . ⟹ 𝑃 𝑌 = 𝑦𝑘 = 𝑃 𝑋 = 𝑥𝑘 + 𝑃 𝑋 = 𝑥𝑙 = 𝑝𝑘 + 𝑝𝑙 20 Density Function of 𝒈(𝑿) • Let 𝑋 be a R.V. with PDF 𝑓𝑋 𝑥 . • If 𝑌 = 𝑔(𝑋) is a continuous function, it is easy to establish a direct procedure to obtain 𝑓𝑌 𝑦 . • Assume that for all 𝑦 , the equation 𝑔(𝑥) = 𝑦 has a countable number of solutions and at each solution point, 𝑑𝑔(𝑥)/𝑑𝑥 exists and is nonzero. Then the PDF of 𝑦 = 𝑔(𝑥) is: 𝑓𝑋 (𝑥𝑖 ) 𝑓𝑌 𝑦 = 𝑔′ (𝑥𝑖 ) 𝑖 Where 𝑔′ (𝑥𝑖 ) is the derivative of 𝑔(𝑥) at 𝑥 = 𝑥𝑖 , and 𝑥𝑖 is the solution of 𝑔 𝑥 = 𝑦. 21 Proof: Consider a specific 𝑦 on the y-axis, and a positive increment 𝑑𝑦 as shown in the figure 𝑓𝑌 𝑦 𝑑𝑦 = 𝑃 𝑦 < 𝑌 ≤ 𝑦 + 𝑑𝑦 • The set of 𝑥 such that 𝑦 < 𝑔(𝑋) ≤ 𝑦 + 𝑑𝑦 consist of the following intervals: 𝑥1 < 𝑥 < 𝑥1 + 𝑑𝑥1 , 𝑥2 + 𝑑𝑥2 < 𝑥 < 𝑥2 , 𝑥3 < 𝑥 < 𝑥3 + 𝑑𝑥3 • 𝑑𝑥1 > 0, 𝑑𝑥2 < 0, 𝑑𝑥3 > 0. g ( x) y dy y x1 x1 dx1 x2 dx2 x2 x3 x3 dx3 x 22 • 𝑃 𝑦 < 𝑌 ≤ 𝑦 + 𝑑𝑦 = 𝑃 𝑥1 < 𝑋 < 𝑥1 + 𝑑𝑥1 + 𝑃 𝑥2 + 𝑑𝑥2 < 𝑋 < 𝑥2 + 𝑃 𝑥3 < 𝑋 < 𝑥3 + 𝑑𝑥3 • 𝑃 𝑥1 < 𝑋 < 𝑥1 + 𝑑𝑥1 = 𝑓𝑋 𝑥1 𝑑𝑥1 𝑑𝑦 𝑑𝑥1 = 𝑔′ (𝑥1 ) • 𝑃 𝑥2 + 𝑑𝑥2 < 𝑋 < 𝑥2 = 𝑓𝑋 𝑥2 𝑑𝑥2 𝑑𝑦 𝑑𝑥2 = 𝑔′ (𝑥2 ) • 𝑃 𝑥3 < 𝑋 < 𝑥3 + 𝑑𝑥3 = 𝑓𝑋 𝑥3 𝑑𝑥3 𝑑𝑦 𝑑𝑥3 = 𝑔′ (𝑥3 ) 𝑓 𝑥 𝑓 𝑥 𝑓 𝑥 • ⟹ 𝑓𝑌 𝑦 𝑑𝑦 = 𝑋′ 1 𝑑𝑦 + 𝑋′ 2 𝑑𝑦 + 𝑋′ 3 𝑑𝑦 𝑔 𝑥1 𝑔 𝑥3 𝑔 𝑥2 1 1 fY ( y ) f X ( xi ) f X ( xi ). i dy / dx x i g ( xi ) i 23 𝑌 = 𝑎𝑋 + 𝑏 • 𝑔 𝑥 = 𝑦 = 𝑎𝑥 + 𝑏 has a single solution 𝑥1 = 𝑦 − 𝑏 𝑎, 𝑔′ 𝑥 = 𝑎 ⟹ 𝑓𝑌 𝑦 = 1 𝑎 𝑦−𝑎 𝑓𝑋 𝑏 • Example: The voltage 𝑉 is a R.V. 𝑉 = 0.01(𝑅 + 1000), 𝑅~𝑈(900,1000) ⇒ 𝑉~𝑈(19,21) 24 1 𝑌= 𝑋 1 𝑥 • 𝑔 𝑥 = 𝑦 = , has a single solution 𝑥1 = ′ 𝑔 𝑥 = ⟹ 𝑓𝑌 𝑦 1 − 2 , 𝑔′ 𝑥1 𝑥 1 1 = 𝑦2 𝑓𝑋 𝑦 1 𝑦 = −𝑦 2 . • Example: The resistance 𝑅~𝑈(900,1100), 1 𝑅 The Conductance 𝐺 = 1 1 1 𝑓𝐺 𝑔 = , <g< 2 200𝑔 1100 900 25 𝑌= 2 𝑎𝑥 • Assume 𝑎 > 0. 𝑔′ 𝑥 = 2𝑎𝑥 • If 𝑦 ≤ 0, then 𝑦 = 𝑎𝑥 2 has no real solutions ⟹ 𝑓𝑌 0 = 0 • If y > 0, then 𝑦 = 𝑎𝑥 2 has two solutions: 𝑦 𝑦 𝑥1 = , 𝑥2 = − 𝑎 𝑎 ⟹ 𝑓𝑌 𝑦 = 1 2𝑎 𝑦 𝑎 𝑓𝑋 𝑦 𝑎 + 𝑓𝑋 − 𝑦 𝑎 26 𝑌= 𝑋 • 𝑔 𝑥 = 𝑦 = 𝑥, 𝑔′ 𝑥 = 1 2 𝑥 • 𝑦 = 𝑥 has a single solution 𝑥1 = 𝑦 2 for 𝑦 > 0, and no solution for 𝑦 < 0. ⟹ 𝑓𝑌 𝑦 = 2𝑦𝑓𝑋 𝑦 2 𝑈(𝑦) • If 𝑋~𝜒 2 is Chi-square: 𝑓𝑋 𝑥 = If 𝑌 = 𝑋 ⇒ 𝑓𝑌 𝑦 = 2 𝑛 2𝑛 2 Γ 2 𝑦 1 2𝑛 2 Γ 𝑛 2 𝑛−1 −𝑦 2 2 𝑒 𝑥𝑛 2−1 −𝑥 2 𝑒 𝑈(𝑥) 𝑈(𝑦) Called Chi density with 𝑛 degree of freedom. – For 𝑛 = 3, we get Maxwell density, 𝑓𝑌 𝑦 = – For 𝑛 = 2, we get Rayleigh density, 𝑓𝑌 𝑦 = 2 2 −𝑦 2 2 𝑦 𝑒 𝑈(𝑦) 𝜋 2 2 − 𝑦 𝑦𝑒 𝑈(𝑦) 27 𝑌=𝑒 𝑋 • 𝑔 𝑥 = 𝑦 = 𝑒 𝑥 , 𝑔′ 𝑥 = 𝑒 𝑥 • 𝑦 = 𝑒 𝑥 has a single solution 𝑥1 = ln 𝑦 for 𝑦 > 0, and no solution for 𝑦 < 0. 1 ⟹ 𝑓𝑌 𝑦 = 𝑓𝑋 ln 𝑦 𝑈(𝑦) 𝑦 • If 𝑋~𝑁(𝜇, 𝜎 2 ), then 𝑌 = 𝑒 𝑋 is lognormal ⟹ 𝑓𝑌 𝑦 = 1 𝑦 2𝜋𝜎 2 𝑒 − ln 𝑦 −𝜇 2 2𝜎 2 28 𝑌 = 𝑎 sin 𝑋 + 𝜃 • Assume 𝑎 > 0 • 𝑔 𝑥 = 𝑦 = 𝑎 sin 𝑥 + 𝜃 • 𝑔′ 𝑥 = 𝑎 cos 𝑥 + 𝜃 = 𝑎2 − 𝑦 2 • For 𝑦 > 𝑎, 𝑔(𝑥) has no solution ⟹ 𝑓𝑌 𝑦 = 0. • For 𝑦 < 𝑎, 𝑔(𝑥) has infinitely many solutions 𝑥𝑖 = 𝑦 −1 sin − 𝜃 , 𝑖 = ⋯ , −2. −1,0,1,2, … 𝑎 ⟹ 𝑓𝑌 𝑦 = 𝑔(𝑥) 1 ∞ 𝑎2 − 𝑦 2 𝑖=−∞ 𝑓𝑋 (𝑥𝑖 ) 𝑦 𝑥0 𝑥1 𝑥2 𝑥 29 • Example: 𝑋~𝑈(−𝜋, 𝜋), 𝑦 = 𝑎 sin(𝑥 + 𝜃) has exactly two solutions in the interval −𝜋, 𝜋 for any 𝜃. 𝑓𝑋 𝑥1 = 𝑓𝑋 𝑥2 = ⟹ 𝑓𝑌 𝑦 = 𝑓𝑋 (𝑥) 1 2𝜋 1 𝜋 𝑎2 − 𝑦 2 , 𝑦 <𝑎 𝑓𝑌 (𝑦) 1 2𝜋 −𝜋 𝜋 𝑥 −𝑎 𝑎 𝑦 30 𝑌 = tan 𝑋 • 𝑔 𝑥 = 𝑦 = tan 𝑥 • 𝑔′ 𝑥 = 1 𝑐𝑜𝑠2 𝑥 = 𝑠𝑒𝑐 2 𝑥 = 1 + 𝑡𝑎𝑛2 𝑥 = 1 + 𝑦 2 • 𝑔(𝑥) has infinitely many solutions 𝑥𝑖 = tan−1 𝑦 , 𝑖 = ⋯ , −2. −1,0,1,2, … ∞ 1 ⟹ 𝑓𝑌 𝑦 = 𝑓𝑋 (𝑥𝑖 ) 2 1+𝑦 𝑖=−∞ 𝑔(𝑥) 𝑦 𝑥0 𝑥1 𝜋 𝑥2 𝑥 31 • 𝜋 𝜋 Example: 𝑋~𝑈(− , ), then 𝑦 = tan 𝑥 has 2 2 one solution 𝑥1 = tan−1 𝑦 in this interval 1 and 𝑓𝑋 𝑥1 = 𝜋 1/𝜋 ⟹ 𝑓𝑌 𝑦 = 1 + 𝑦2 So 𝑌 is Cauchy R.V. 32 The Inverse Problem Given the distribution 𝐹𝑋 (𝑥) of the R.V. 𝑋, find the function 𝑔(𝑥) such that the distribution of the R.V. 𝑌 = 𝑔(𝑋) equals a specific function 𝐹𝑌 (𝑦). • From 𝐹𝑋 (𝑥) to a uniform distribution: Given 𝐹𝑋 (𝑥) then 𝑈 = 𝑔 𝑋 = 𝐹𝑋 (𝑋) is a uniformly distributed R.V in the interval (0,1) ⟹ 𝐹𝑈 𝑢 = 𝑢 , 0 ≤ 𝑢 ≤ 1 33 • Proof: put 𝑢 = 𝐹𝑋 (𝑥) and knowing that 𝐹𝑋 (𝑥) is monotonic then: 𝑈 ≤ 𝑢 𝑖𝑓𝑓 𝑋 ≤ 𝑥 𝐹𝑈 𝑢 = 𝑃 𝑈 ≤ 𝑢 = 𝑃 𝑋 ≤ 𝑥 = 𝐹𝑋 𝑥 =𝑢 𝑋 𝐹𝑋 (𝑥) 𝑈 𝐹𝑋−1 (𝑢) 𝑈 = 𝐹𝑋 (𝑋) 𝑋 = 𝐹𝑋−1 (𝑈) 34 • From Uniform to 𝐹𝑌 (𝑦): Given 𝑈~𝑈(0,1) then 𝑌 = 𝑔 𝑈 = 𝐹𝑌−1 (𝑈) is a R.V with the distribution 𝐹𝑌 𝑦 From 𝐹𝑋 (𝑥) to 𝐹𝑌 (𝑦): Find 𝑈 = 𝐹𝑋 (𝑋) then 𝑌 = 𝐹𝑌−1 (𝑈) ⟹ 𝑌 = 𝐹𝑌−1 𝐹𝑋 (𝑋) 𝑋 𝐹𝑋 (𝑥) 𝑈 = 𝐹𝑋 (𝑋) 𝐹𝑌−1 (𝑢) 𝑌 = 𝐹𝑌−1 (𝑈) 35
© Copyright 2026 Paperzz