Praha, Mar 30, 2006 Strong EWSB in Top Quark Production at ILC Ivan Melo M. Gintner, I. Melo, B. Trpišová (University of Žilina) Outline • Motivation for new vector (ρ) resonances: Strong EW Symmetry Breaking (SEWSB) • Vector resonance model • ρ signal at future e+e- colliders e+e- → νν tt e+e- → t t • Beamstrahlung EWSB: SU(2)L x U(1)Y → U(1)Q Weakly interacting models: - SUSY - Little Higgs Strongly interacting models: - Technicolor Summary of the DCR Physics Group Strongly interacting Higgs sector: a priority !!!! - Summarize/update the scenario with resonances - See for new studies with the chiral approach Chiral SB in QCD SU(2)L x SU(2)R → SU(2)V , vev ~ 90 MeV EWSB SU(2)L x SU(2)R → SU(2)V , vev ~ 246 GeV WL WL → WL WL WL WL → t t t π = WL L = i gπ Mρ /v (π- ∂μ π+ - π+ ∂μ π-) ρ0μ + gt t γμ t ρ0μ + gt t γμ γ5 t ρ0μ tt→tt t t International Linear Collider: e+e- at 1 TeV ee ―› νν WW ee ―› νν tt ee ―› ρtt ―› WW tt ee ―› ρtt ―› tt tt ee ―› WW ee ―› tt Large Hadron Collider: pp at 14 TeV pp ―› jj WW pp ―› jj tt pp ―› ρtt ―› WW tt pp ―› ρtt ―› tt tt pp ―› WW pp ―› tt Chiral effective Lagrangian SU(2)L x SU(2)R global, SU(2)L x U(1)Y local L = Lkin + Lnon.lin. σ model - a v2 /4 Tr[(ωμ + i gv ρμ . τ/2 )2] + Lmass + LSM(W,Z) BESS μ + + + + b1 ψL i γ (u ∂μ – u i gv ρμ . τ/2 + u i g’/6 Yμ) u ψL + b2 ψR Pb i γμ (u ∂μ – u i gv ρμ . τ/2 + u i g’/6 Yμ) u+ Pb ψR + λ1 ψ L i γ μ u + A μ γ 5 u ψ L Our model + λ2 ψR Pλ i γμ u Aμ γ5 u+ Pλ ψR Standard Model with Higgs replaced with ρ ωμ = [u+(∂μ + i g’/2 Yμτ3)u + u(∂μ+ i g Wμ . τ/2)u+]/2 gπ- u(∂=+ i M v +g]/2v) ρ /(2 Aμ = [u+(∂μ + i g’/2 Yμτ3)u g W . τ/2)u μ μ t g = gv b2 /4 + … u = exp(i π . τ /2v) ψL = (tL,bL) t Pb = diag(p1,p2) Mρ ≈ √a v gv /2 Low energy constraints gv ≥ 10 → gπ ≤ 0.2 Mρ (TeV) |b2 – λ2| ≤ 0.04 → gt ≈ gv b2 / 4 |b1 – λ1| ≤ 0.01 → b1 = 0 Unitarity constraints WL WL → WL WL , WL WL → t t, t t → t t gπ ≤ 1.75 (Mρ= 700 GeV) gt ≤ 1.7 (Mρ= 700 GeV) Partial (Γ―›WW) and total width Γtot of ρ Subset of fusion diagrams + approximations (Pythia) Full calculation of 66 diagrams at tree level (CompHEP) Pythia vs CompHEP ρ (M = 700 GeV, Γ = 12.5 GeV, g’’ = 20, b2 = 0.08) Before cuts √s (GeV) Pythia (fb) CompHEP (fb) 800 0.35 0.66 1000 0.95 1.16 1500 3.27 3.33 Backgrounds (Pythia) e+e- → tt γ e+e- → e+e- tt σ(0.8 TeV) = 300.3 + 1.3 fb → 0.13 fb (0.20 fb) σ(1.0 TeV) = 204.9 + 2.4 fb → 0.035 fb (0.16 fb) R= |N(ρ) – N(no res.)| √(N(no res.)) ≈ S/√B > 5 e- e+ → t t ρ different from Higgs ! ρ (M= 700 GeV, b2=0.08, g’’=20) x+y=560 nm z=0.40 mm n=2x1010 Beamstrahlung Bunch parameters at IP: TESLA (500 GeV): SLC (SLAC): N = 5 x 1010 N = 2 x 1010 σx = 1500 nm σx = 554 nm σy = 1500 nm σy = 5 nm σz = 1.05 mm σz = 0.3 mm δBS = 0.00045 δBS = 0.02 – 0.2 L = N2 Hd f/ 4πσxσy pinch effect E(b)= Ne/(2πε0 L R2) b R = 2 σx = 2 σy L is bunch length b ey e+ bunch y(z) = b0 cos[(√3Dy/2)1/2 z/L] z x Dy = 2N reσz/[γσy(σx+σy)] Disruption Pinch effect p e- F= eE(b) r z r= p/eE(b) s L = N2 Hd f/ 4πσxσy Dy = 2N reσz/[γσy(σx+σy)] PW= 2ke2γ4/(3r2), v→c=1 ΔE = PWΔt = PWΔz δBS = ∫ ΔE /E = 4N2γ re3/[3√3 σz (σx+σy)2] = 2 – 20 % Conclusions • strong ρ-resonance model (modified BESS) • e+e- → ννtt e+e- → tt R ≤ 26 at CM energy = 1 TeV, L = 200 fb-1 Lscan = 1 fb-1
© Copyright 2026 Paperzz