This article was downloaded by: [Ioan, Catalin Angelo] On: 13 April 2011 Access details: Access Details: [subscription number 936329567] Publisher Routledge Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 3741 Mortimer Street, London W1T 3JH, UK Applied Economics Letters Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713684190 A generalization of a class of production functions Catalin Angelo Ioana; Gina Ioana a Department of General Economics, Danubius University, Galati, Romania First published on: 12 April 2011 To cite this Article Ioan, Catalin Angelo and Ioan, Gina(2011) 'A generalization of a class of production functions', Applied Economics Letters,, First published on: 12 April 2011 (iFirst) To link to this Article: DOI: 10.1080/13504851.2011.564117 URL: http://dx.doi.org/10.1080/13504851.2011.564117 PLEASE SCROLL DOWN FOR ARTICLE Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material. Applied Economics Letters, 2011, 1–8, iFirst A generalization of a class of production functions Catalin Angelo Ioan* and Gina Ioan Downloaded By: [Ioan, Catalin Angelo] At: 05:19 13 April 2011 Department of General Economics, Danubius University, 800654 Galati, Romania In this article we shall give a generalization of Cobb–Douglas, Constant Elasticity of Substitution (CES), Lu–Fletcher, Liu–Hildebrand, Variable Elasticity of Substitution (VES) and Kadiyala production functions. We compute the principal indicators such as the marginal products, the marginal rate of substitution, the elasticities of factors and the elasticity of substitution. Finally, we formulate three theorems of characterization for the functions with a proportional marginal rate of substitution, with constant elasticity of labour and for those with constant elasticity of substitution (for n = 1). Keywords: production functions; Cobb–Douglas; CES; Lu–Fletcher; Liu–Hildebrand; VES; Kadiyala JEL Classification: D24 I. Introduction In the economical analysis, the production functions had a long and interesting history (Kmenta, 1967; Sato, 1974; Ioan, 2004, 2007; Mishra 2007). A production function is defined as P:R+ · R+!R+, P = P(K,L), where P is the production, K the capital and L the labour such that K ¼ @P the marginal product of K; @K ð4Þ L ¼ @P the marginal product of L; @L ð5Þ @P RMS ¼ @L the marginal rate of substitution; ð6Þ @P @K @P Pð0; 0Þ ¼ 0 the elasticity of K; EK ¼ @K P ð1Þ ð7Þ K P is differentiable of order 2 in any interior point of the production set; P is a homogenous function of degree 1, that is, P(rK,rL) = rP(K,L) "rPR; @P @P 0; 0 @K @L ð2Þ @2P @2P 0; 0 @K2 @L2 ð3Þ For any production function, we have a lot of indicators such as @P EL ¼ @L the elasticity of L; P ð8Þ L s¼ @P @P @L @K @2 P P @K@L the elasticity of substitution: ð9Þ Cobb and Douglas (1928) formulated the well-known production function: P(K,L) = aKpL1-p where pP[0,1], which have many applications in various economical problems. *Corresponding author. E-mail: catalin_angelo_ioan@univ_danubius.ro Applied Economics Letters ISSN 1350–4851 print/ISSN 1466–4291 online # 2011 Taylor & Francis http://www.informaworld.com DOI: 10.1080/13504851.2011.564117 1 C. A. Ioan and G. Ioan 2 Arrow et al. (1961) generalized the preceding and obtained the Constant Elasticity of Substitution (CES) 1 production function: PðK; LÞ ¼ aðbKr þ ð1 bÞLr Þr , which for r = 0 becomes Cobb–Douglas function. The Lu–Fletcher production function also generalized the CES function into the form: PðK; LÞ cð1bÞ b b1 ¼ a dKb þ ð1 dÞ KL L , which for c = 0, Downloaded By: [Ioan, Catalin Angelo] At: 05:19 13 April 2011 = 1 becomes CES function. Liu and Hildebrand (1965) made a new generalization of the CES function: 1 PðK; LÞ ¼ a ð1 dÞK þ dKm Lð1mÞ for m ¼ 0 Revankar (1971) introduced the Variable Elasticity of Substitution (VES) function: PðK; LÞ ¼ aKrð1dmÞ ½L þ ðm 1ÞKrdm , which for m = 1, r = 1 is also generalization of Cobb–Douglas production function. Kadiyala (1972) made an important generalization with r b þb PðK; LÞ ¼ EðtÞ c11 Kb1 þb2 þ2c12 Kb1 Lb2 þ c22 Lb1 þb2 1 2 where c11 + 2c12 + c22 = 1, cij 0, b1(b1 + b2) . 0, b2(b1 + b2) . 0 For c12 = 0, r = 1 Kadiyala (1972) obtained the CES function, c22 = 0 generates directly the Lu–Fletcher function, for c11 = 0, c22 = 0, r = 1 – the Cobb–Douglas function and, finally, for 1 b1 ¼ dm 1, b2 = 1, c22 = 0 – the VES function. In what follows, we shall make a new generalization, from another point of view, of these functions. We have then the following cases: pi1 ; pi2 ; pi3 2 ð1; 0Þ and pi3 ðpi1 þ pi2 Þ ¼ 1 ð14Þ pi1 ; pi2 2 ð0; 1Þ; pi3 2 ½1; 1Þ and pi3 ðpi1 þ pi2 Þ ¼ 1 From Equation 13 we have that 9i ¼ 1; n such that ci2 + ci1ci3 . 0, therefore if for such an i, we have ci2 = 0 follows that ci1, ci3 . 0 and if ci2 . 0 follows that ci1, ci3 are arbitrary (of course nonnegative). If we note K ¼w L ð15Þ follows P¼L n X pi3 ai ðci1 wpi1 þpi2 þ ci2 wpi1 þ ci3 Þ ð16Þ i¼1 Because w 0 and for any i ¼ 1; n we have that ai . 0 and at least one of ci1, ci2 or ci3 is greater than 0 we obtain P 0. Also from Equation 11: P(0,0) = 0 and P is differentiable of order 2 in any interior point of the production set. We have now PðrK; rLÞ ¼ rL n P p ai ðci1 wpi1 þpi2 þ ci2 wpi1 þ ci3 Þ i3 ¼ r1 PðK; LÞ; i¼1 therefore P is homogenous of first degree. Let now Ai ðwÞ ¼ ci1 wpi1 þpi2 þ ci2 wpi1 þ ci3 >0; i ¼ 1; n ð17Þ From Equations 6 and 7 we have II. The Sum Production Function P¼L Let the production function PðK; LÞ ¼ n X pi1 þpi2 pi3 Þ ; n1 FðwÞ ¼ ð10Þ where n P ai Ai ðwÞpi3 ð19Þ i¼1 From Equation 17 we obtain easily ai >0 "i ¼ 1; n; pi3 2 ð1; 0Þ¨½1; 1Þ; pi1 pi2 >0; pi3 ðpi1 þ pi2 Þ n P ð18Þ where i¼1 ¼ 1 "i ¼ 1; n ai Ai ðwÞpi3 ¼ LFðwÞ i¼1 ai ðci1 Kpi1 þpi2 þ ci2 Kpi1 Lpi2 þci3 L n P ð11Þ ð12Þ ðci2 þ ci1 ci3 Þ>0; cij 0 "i ¼ 1; n "j ¼ 1; 3 ð13Þ A0i ðwÞ ¼ wpi1 1 ½ci1 ðpi1 þ pi2 Þwpi2 þ ci2 pi1 ; i ¼ 1; n ð20Þ A00i ðwÞ ¼ wpi1 2 ½ci1 ðpi1 þ pi2 Þðpi1 þ pi2 1Þwpi2 þci2 pi1 ðpi1 1Þ; i ¼ 1; n ð21Þ i¼1 From Equation 15 we obtain after partial derivation From Equation 12 follows that if pi3 , 0 then pi1, pi2 , 0. If pi3 1 then pi1, pi2 . 0 and pi1 þ pi2 ¼ p1i3 1, therefore 1 - pi1 pi2 . 0, 1 - pi2 pi1 . 0. @w 1 @w K w ¼ ; ¼ 2 ¼ @K L @L L L ð22Þ A generalization of a class of production functions From Equation 18 we have @P @P ¼ FðwÞ wF0 ðwÞ; ¼ F0 ðwÞ @L @K ð23Þ 3 Lemma 1: Let qi P R*, i ¼ 1; m, m 1, qi qj "i; j ¼ 1; m, i j. Therefore the functions wqi ; i ¼ 1; m and the constant function 1 are linear indem P pendent, that is from the equality: bi wqi þ bm þ1 ¼ 0 i¼ 1 therefore follows bi = 0, i ¼ 1; m þ 1. @P P @P ¼ w @L L @K ð24Þ which can also be derived from Euler’s formula for homogenous functions. By derivation with L and after with K in Equation 24, we obtain @P @ P @LL P w @P @2P @2P w ¼ w ¼ þ L2 @L2 L @K @L@K @L@K 2 @ P 1 @P 1 @P @2P @2P ¼ w 2 ¼ w 2 @L@K L @K L @K @K @K Downloaded By: [Ioan, Catalin Angelo] At: 05:19 13 April 2011 2 therefore @2P @2P ¼ w 2 @L @L@K 2 ð25Þ 2 @ P 1 @ P ¼ @K2 w @L@K ð26Þ 2 @2P 2@ P ¼ w @L2 @K2 ð27Þ @2P @2P have the From Equation 27 we have that 2 and @L @K2 same sign. We obtain from Equation 18 @P ¼ K ¼ @K n P ai Ai ðwÞpi3 1 wpi1 1 ðci1 wpi2 þ ci2 pi1 pi3 Þ ð28Þ i¼ 1 @P L ¼ @K ¼ n P i¼ 1 ai Ai ðwÞpi3 1 ðAi ðwÞ wpi3 Ai ðwÞÞ 0 ð29Þ Because Ai ðwÞ wpi3 A0i ðwÞ ¼ ðci1 wpi1 þpi2 þ ci2 wpi1 þ ci3 Þ wpi3 ci1 ðpi1 þ pi2 Þwpi1 þpi2 1 þ ci2 pi1 wpi1 1 ¼ ci2 pi2 pi3 w pi1 þ ci3 We obtain from Equation 29 L ¼ @P @L ¼ n P ai Ai ðwÞpi3 1 ðci2 pi2 pi3 wpi1 þ ci3 Þ ð30Þ i¼1 From Equations 11–14 we can see easily that @P=@K 0. We have now the following lemma, which will be useful in all what follows: Pm Proof 1: Differentiating the equality þbm þ1 ¼ 0 m-times, we obtain m P bi i ¼1 where qi k ¼ i¼ 1 bi w qi qi qi k ¼ 0; k ¼ 1; m w k qi ðqi 1Þ . . . ðqi k þ 1Þ ; k ¼ 1; m : k! Computing the determinant of the system, we obtain q1 q 1 1 1 w q1 q 2 1 2 w .. . q1 q m 1 m w wq2 1 1 q2 q2 2 w 2 .. . q2 q2 m w m q2 wqm 1 1 qm qm 2 w 2 .. . qm qm m w m qm ¼ wq1 m . . . wqm m q1 m1 1 w qm m2 2 w .. . q1 m wm1 1 q2 m2 w 2 .. . q2 q1 1 q1 2 .. . q1 m q2 1 q2 2 .. . q2 m m ¼ wq1 m . . . wqm m w ðm1Þm 2 1 qm 2 .. . qm m ¼ wq1 m . . . wqm m w qm ðm1Þm 2 w 1 qm m2 w 2 .. . qm m q2 D qm m1 C. A. Ioan and G. Ioan 4 The degree of the determinant-like function of q1, q2 . . ., qm is mðm þ 1Þ 1 þ 2 þ ... þ m ¼ 2 If qi = qj, i j we have that columns i and j are equals then D = 0. Also, if qi = 0 for an i ¼ 1; m follows that m m i¼1 i; j¼1 ij D = 0. From this, follows that D ¼ a qi ðqi qj Þ with a a constant because the degree of the right side is ¼ mðmþ1Þ . For m = 2 we have that D = m þ mðm1Þ 2 2 q1q2(q2-q1), therefore a = 1. We now have the determinant of the system: wq1 m . . . wqm m w ðm1Þm 2 m Y qi Downloaded By: [Ioan, Catalin Angelo] At: 05:19 13 April 2011 i¼1 m Y ðqi qj Þ0 i; j¼1 ij From the system we obtain that bi = 0, i ¼ 1; m and & from the initial equality follows that bm+1 = 0. Returning to the production functions we have from Equation 28 that if @P/@K = 0 then it follows that ci1 wpi2 þ ¼ ci2 pi1 pi3 ¼ 0 "i ¼ 1; n, therefore from Lemma 1, ci1 ¼ ci2 ¼ 0 "i ¼ 1; n, which is a contradiction with Equation 15. We have finally that @P/@K . 0. From Equation 30 we have that @P/@L 0. If @P/@K = 0 we have ci2 pi2 pi3 wpi1 þ ci3 ¼ 0, therefore ci2 ¼ ci3 ¼ 0 "i ¼ 1; n, which is a contradiction with Equation 13. We have finally that @P/@L . 0. Let us now compute the second derivatives. n @2P X ai pi3 ðpi3 1ÞAi ðwÞpi3 2 Ai02 ðwÞ L 2¼ @K i¼1 þ n X ai pi3 Ai ðwÞpi3 1 A00i ðwÞ þci1 ci3 ð1 pi1 pi2 Þwpi2 þci1 ci2 pi2 pi3 ð1 pi2 Þwpi2 þpi1 ð31Þ From Equations 11–14 follows that L@ 2P/@K2 0. If @ 2P/@K2 = 0 we have that c2i2 pi1 pi2 p2i3 wpi1 þ ci3 ci2 pi1 pi3 ð1 pi1 Þ þ ci1 ci3 ð1 pi1 pi2 Þwpi2 þ ci1 ci2 pi2 pi3 ð1 pi2 Þwpi2 þpi1 ¼ 0 and from Lemma 1 we have ci2 = 0, ci1ci3 = 0, which is a contradiction with Equation 13. We have therefore @ 2P/@K2 , 0. From Equation 27 we obtain that @ 2P/ @L2 , 0 and from Equation 26 that @ 2P/@L@K . 0. The marginal rate of substitution is P @P RMS ¼ @L ¼L @P @K n P ¼ @P w @K @P @K ¼ P w @P L @K ai Ai ðwÞpi3 1 ðci2 pi2 pi3 wpi1 þ ci3 Þ ð32Þ i¼1 n P ai Ai ðwÞpi3 1 wpi1 1 ðci1 wpi2 þ ci2 pi1 pi3 Þ i¼1 The elasticities of L and K are @P EL ¼ @L ¼1w P L n P ¼ @P @K w KP ai Ai ðwÞpi3 1 ðci2 pi2 pi3 wpi1 þ ci3 Þ ð33Þ i¼1 n P ai Ai ðwÞpi3 i¼1 i¼1 ¼ n X ai Ai ðwÞpi3 2 wpi1 2 c2i2 pi1 pi2 p2i3 wpi1 EK ¼ 1 EL ð34Þ i¼1 þci3 ci2 pi1 pi3 ð1 pi1 Þ s¼ The elasticity of substitution: @P @P @L @K @2 P P @K@L n P ai aj Ai ðwÞpi3 1 Aj ðwÞpj3 1 wpj1 1 ðci2 pi2 pi3 wpi1 þ ci3 Þðcj1 wpj2 þ cj2 pj1 pj3 Þ i;j¼1 ¼ w n P i; j¼1 h i ai aj Ai ðwÞpi3 Aj ðwÞpj3 2 wpj1 2 c2j2 pj1 wpj1 pj2 p2j3 þ cj3 cj2 pj1 pj3 ð1 pj1 Þ þ cj1 cj3 ð1 pj1 pj2 Þwpj2 þ cj1 cj2 wpj2 þpj1 pj2 pj3 ð1 pj2 Þ ð35Þ A generalization of a class of production functions 5 III. Particular Cases For n = 1 we have PðK; LÞ ¼ aðc1 Kp1 þp2 þ c2 Kp1 Lp2 þ c3 Lp1 þp2 Þ p3 ð36Þ For n = 1, p1 = 1 - , p2 = , P (0,1), c1 = 0, c2 = 1, c3 = 0 we have P(K,L) = aK1 - L . where the conditions 11–13 become ð37Þ a>0 The Cobb–Douglas production function p3 2 ð1; 0Þ ¨ ½1; 1Þ; p1 p2 >0; p3 ðp1 þ p2 Þ ¼ 1 ð38Þ The CES production function For n = 1, p1 ¼ 2, p2 ¼ 2, c1 = , c2 = 0, c3 = 1 -1 , P(0,1) we have PðK; LÞ ¼ aðdK þ ð1 dÞL Þ : The Lu–Fletcher production function c2 þ c1 c3 >0; c1 ; c2 ; c3 0 ð39Þ For n = 1, p1 = -(1-b), p2 = (1-b)+b, c1 = , c2 = 1-, c3 = 0, P(0,1) we obtain PðK; LÞ ¼ 1 a dKb þ ð1 dÞKð1bÞ Lð1bÞþb b . ð40Þ The Liu–Hildebrand production function From Equations 28 and 30–35 we obtain Downloaded By: [Ioan, Catalin Angelo] At: 05:19 13 April 2011 @P ¼ aAðwÞp3 1 wp1 1 ðc1 wp2 þ c2 p1 p3 Þ K ¼ @K p3 1 L ¼ @P ðc2 p2 p3 wp1 þ c3 Þ @L ¼ aAðwÞ ð41Þ p3 2 p1 2 2 @2P L @K w c2 p1 wp1 p2 p23 2 ¼ aAðwÞ þ c1 c2 w RMS ¼ ¼ p2 p3 ð1 p2 Þ ð42Þ ð43Þ EL ¼ EK ¼ s¼ wp1 ðc1 wp2 þ c2 p1 p3 Þ c1 wp1 þp2 þ c2 wp1 þ c3 1 1 þK dm1 LÞdm ¼ aK1dm ððm 1ÞK þ LÞdm a particular case of VES production function. The Kadiyala production function aAðwÞp3 1 wp1 1 ðc1 wp2 þ c2 p1 p3 Þ aAðwÞp3 1 ðc2 p2 p3 wp1 þ c3 Þ aAðwÞp3 c2 p2 p3 wp1 þ c3 ¼ c1 wp1 þp2 þ c2 wp1 þ c3 1 For n = 1, p1 ¼ dm 1, p2 = 1, c1 = m-1, c2= 1, c3 = 0, mP (0,1), m 1 we have PðK; LÞ ¼ a ðm 1ÞK dm aAðwÞp3 1 ðc2 p2 p3 wp1 þ c3 Þ c2 p2 p3 wp1 þ c3 wp1 1 ðc1 wp2 þ c2 p1 p3 Þ 1 þbKd Lð1dÞ Þ . The VES production function þ c3 c2 p1 p3 ð1 p1 Þ þ c1 c3 ð1 p1 p2 Þwp2 p2 þp1 For n = 1, p1 = , p2 = (1-), c1 = 1-b, c2 = b, c3 = 0, P (0,1) we have PðK; LÞ ¼ aðð1 bÞK ð44Þ For c1+c2+c3 = 1 and c2 0 or c2 = 0, but c1, c3 . 0, we obtain a particular case of Kadiyala production function. IV. Theorems Theorem 1: The only case when RMS ¼ k KL where k is a positive constant is the Cobb–Douglas function with ¼ 1=k þ 1. ð45Þ Proof 1: From Equation 32 we have ðc2 p2 p3 wp1 þ c3 Þðc1 wp2 þ c2 p1 p3 Þ c22 p1 wp1 p2 p23 þ c3 c2 p1 p3 ð1 p1 Þ þ c1 c3 ð1 p1 p2 Þwp2 þ c1 c2 wp2 þp1 p2 p3 ð1 p2 Þ ð46Þ C. A. Ioan and G. Ioan 6 n X From Lemma 1 we have ai Ai ðwÞpi 31 ðci2 pi2 pi3 wpi1 þ ci3 Þ i¼1 ¼k n X pi1 kpi2 ¼ 0 "i ¼ 1; n i¼1 and with the notation pi2=p we have that pi1 = kp, pi2 1 1 = p, pi3 ¼ ðkþ1Þp , p kþ1 . The production function becomes therefore n X ð52Þ ai Ai ðwÞpi 31 wpi1 ðci1 wpi2 þ ci2 pi1 pi3 Þ ai Ai ðwÞpi3 1 PðK; LÞ ¼ ð47Þ i¼1 ci1 wpi1 þpi2 þ ci2 pi3 ðpi1 kpi2 Þwpi1 þ ci3 ¼ 0 n 1 P k 1 ai ci2 Kkp Lp ðkþ1Þp ¼ aKðkþ1Þ Lðkþ1Þ after obvious notations. Note that I ¼ fi ¼ 1; njpi1 ; pi2 ; pi3 <0g and J ¼ fj ¼ 1; njpj1 ; pj2 ; pj3 >0g: Because Equation 47 holds for every w, we have with Equation 14: ð53Þ i¼1 & Theorem 2: The only case when EL = k where k is a constant is the Cobb–Douglas function with = k. Downloaded By: [Ioan, Catalin Angelo] At: 05:19 13 April 2011 Proof 2: From Equation 33 we have that lim n X w!1 ai Ai ðwÞ X w!1 i21 X þ lim w!1 X w!0 ½ci1 w pi1 þ ci2 pi3 ðpi1 kpi2 Þw þ ci3 pi3 1 pi1 þpi2 ½ci1 w pi1 þ ci2 pi3 ðpi1 kpi2 Þw n P þ ci3 i2J n X n P p ð48Þ aj cj3j3 1 therefore n X i ¼1 w!0 þ lim i2I w!1 X pj3 1 aj Aj ðwÞ i2J ai cpi1i3 1 þ i2I X pj1 þ pj2 cj1 w pj1 þ cj2 pj3 ðpj1 kpj2 Þw p þ cj3 þci3 ð1 kÞ kci1 wpi1 þpi2 Þ ¼ 0 ð49Þ aj cj3j3 i2J From Equations 48 and 49 we have that ci1 = ci3 = 0 "iPI and cj1 = cj3 = 0 "jPJ, therefore ci1 = ci3 = 0 "i ¼ 1; n. From Equation 47 we now have lim n X w!1 ai Ai ðwÞpi 31 wpi1 ci2 pi3 ðpi1 kpi2 Þ ¼ 0 ð50Þ X ¼ lim w!1 ¼ ai Ai ðwÞpi3 1 ðci2 ðpi2 pi3 kÞwpi1 þ ci3 ð1 kÞ kci1 wpi1 þpi2 Þ i ¼1 X ai Ai ðwÞpi3 1 ðci2 ðpi2 pi3 kÞwpi1 þ ci3 ð1 kÞ kci1 wpi1 þpi2 Þ i2I X w!1 i ¼1 ai Ai ðwÞpi3 1 ðci2 ðpi2 pi3 kÞwpi1 þ ci3 ð1 kÞ kci1 wpi1 þpi2 Þ i2J ð1 kÞai cpi3i3 lim w!1 i2I where lim w!0 Ai ðwÞ ¼ ci2 wpi1 n X w!0 þ lim w!0 n P i¼1 ai cpi2i3 wpi 1pi 3 pi3 ðpi1 kpi2 Þ ¼ 0 ð51Þ X kai cpi1i3 1 ð55Þ i2J ai Ai ðwÞpi3 1 ðci2 ðpi2 pi3 kÞwpi1 þ ci3 ð1 kÞ kci1 wpi1 þpi2 Þ i¼1 ¼ lim that is ð54Þ Note again that I ¼ fi ¼ 1; njpi1 ; pi2 ; pi3 <0g and J ¼ fj ¼ 1; njpj1 ; pj2 ; pj3 >0g: Because Equation 54 holds for every w, we have þ lim n P ai Ai ðwÞpi3 1 ðci2 ðpi2 pi3 kÞwpi1 i¼1 ai Ai ðwÞpi3 1 ½ci1 wpi1 þ pi2 þ ci2 pi3 ðpi1 kpi2 Þwpi1 þ ci3 X ¼ k0 ai Ai ðwÞpi3 i ¼1 X ai Ai ðwÞpi3 1 ½ci1 wpi1 þ pi2 þ ci2 pi3 ðpi1 kpi2 Þwpi1 þ ci3 X ai Ai ðwÞpi3 1 ðci2 pi2 pi3 wpi1 þ ci3 Þ i¼1 aj Aj ðwÞpi3 1 cj1 wpj1 þpj2 þ cj2 pj3 ðpj1 kpj2 Þwpj1 þ cj3 i2J ¼ lim ¼ ai Ai ðwÞ ai cpi3i3 þ i2I lim pi2 þpi2 i ¼1 ¼ lim ¼ pi3 1 X ai Ai ðwÞpi3 1 ðci2 ðpi2 pi3 kÞwpi1 þ ci3 ð1 kÞ kci1 wpi1 þpi2 Þ i2I X ai Ai ðwÞpi3 1 ðci2 ðpi2 pi3 kÞwpi1 þ ci3 ð1 kÞ kci1 wpi1 þpi2 Þ i2J ¼ lim w!0 X i2I kai cpi1i3 1 þ X i2J ð1 kÞai cpi3i3 ð56Þ A generalization of a class of production functions From Equations 55 and 56 ci1 = 0 "iPJ, (1 - k)ci3 = 0 "iPI, ci1 = 0 "iPI and (1 - k)ci3 = 0 "iPJ, therefore ci1 = 0 and (1 - k)ci3 = 0 "i ¼ 1; n. If k = 1 we have only ci1 = 0 and Equation 54 becomes n P ai Ai ðwÞpi3 1 ci2 ðpi2 pi3 1Þwpi1 ¼ 0 7 c1 c2 p2 p3 ðkð1 p2 Þ 1Þ ¼ 0 ð62Þ c22 p1 p2 p23 ðk 1Þ ¼ 0 ð63Þ c1 c3 ðkð1 p1 p2 Þ 1Þ ¼ 0 ð64Þ c2 c3 p1 p3 ðkð1 p1 Þ 1Þ ¼ 0 ð65Þ ð57Þ i¼1 Because pi2pi3-1 = -pi1pi3 we can also write n P ai Ai ðwÞpi3 1 ci2 pi1 pi3 wpi1 ¼ 0 ð58Þ i¼1 Downloaded By: [Ioan, Catalin Angelo] At: 05:19 13 April 2011 From Lemma 1 we have now ci2 = 0, which is an obvious contradiction. If k 1 then ci1 ¼ ci3 ¼ 0 "i ¼ 1; n and Equation 54 becomes n P ai Ai ðwÞpi3 1 ci2 ðpi2 pi3 kÞwpi1 ¼ 0 ð59Þ i¼1 or, from Lemma 1 ci2 ðpi2 pi3 kÞ ¼ 0 "i ¼ 1; n ð60Þ From Equation 60 we have now ci2 = 0, or ci2 0 but pi2 ¼ k=pi3 , from where pi1 ¼ ð1 kÞ=pi3 . Finally PðK; LÞ ¼ n P i¼1 ai cpi2i3 K1k Lk ¼ aK1k Lk Û ð61Þ Theorem 3: The only cases when for n = 1, s = k where k is a positive constant are the Cobb–Douglas function and CES function with ¼ k=1 k. Proof 3: From Equation 35 we obtain ðc2 p2 p3 wp1 þ c3 Þðc1 wp2 þ c2 p1 p3 Þ ¼ k c22 p1 wp1 p2 p23 þ c3 c2 p1 p3 ð1 p1 Þ þc1 c3 ð1 p1 p2 Þwp2 þ c1 c2 wp2 þp1 p2 p3 ð1 p2 Þ that is ðkc1 c2 p2 p3 ð1 p2 Þ c1 c2 p2 p3 Þwp1 þp2 þ ðkc22 p1 p2 p23 c22 p1 p2 p23 Þwp1 þ ðkc1 c3 ð1 p1 p2 Þ c1 c3 Þwp2 þ kc3 c2 p1 p3 ð1 p1 Þ c2 c3 p1 p3 ¼ 0 From Lemma 1, we obtain If c2 0 follows from Equation 63 that k = 1 and from Equation 62 we have c1 = 0 and c3 = 0. The function is PðK; LÞ ¼ aðc2 Kp1 Lp2 Þp3 ¼ bKp L1p with obvious notations. If c2 = 0, from Equation 64 we have k(1 - p1 - p2) 3 1 = 0, that is, k ¼ p13p1 and the function is p p p PðK; LÞ ¼ aðc1 K þ c3 L Þ and k ¼ 1=1 p. & V. Conclusions The sum production function, which we have introduced in this article, integrates in an unitary expression various production functions such as Cobb–Douglas, CES, Lu–Fletcher, Liu–Hildebrand, VES and Kadiyala. In a big enterprise with various departments of production and peculiar production’s processes, each of them has a production that follows a different law. The total production is therefore the sum of partial results that can be considered like the function defined in this article. The first two theorems presented here are very important because they show that a condition imposed upon the proportionality marginal rate of substitution or upon the constancy of the elasticity of labour can exist only when each component is Cobb–Douglas with the same parameter. The third theorem also shows that in the case of n = 1 the only cases when the elasticity of substitution is constant are the Cobb–Douglas function and CES function. Finally, we can say that the sum production function can be considered like a class of functions with its own indicators that generalize those of particular cases. References Arrow, K. J., Chenery, H. B., Minhas, B. S. and Solow, R. M. (1961) Capital labour substitution and economic efficiency, Review of Economics and Statistics, 63, 225–50. Cobb, C. W. and Douglas, P. H. (1928) A theory of production, American Economic Review, 18, 139–65. Ioan, C. A. (2004) Applications of Geometry at the Study of Production Functions Annals of Danubius University, Danubius University, Galati, pp. 27–39. Ioan, C. A. (2007) Applications of the space differential geometry at the study of production functions, Euroeconomica, 18, 30–8. 8 Downloaded By: [Ioan, Catalin Angelo] At: 05:19 13 April 2011 Kadiyala, K. R. (1972) Production functions and elasticity of substitution, Southern Economic Journal, 38, 281–4. Kmenta, J. (1967) On estimation of the CES production function, International Economic Review, 8, 180–9. Liu, T. C. and Hildebrand, G. H. (1965) Manufacturing Production Functions in the United States, 1957, Cornell University Press, Ithaca, NY. C. A. Ioan and G. Ioan Mishra, S. K. (2007) A Brief History of Production Functions, North-Eastern Hill University, Shillong, India. Revankar, N. S. (1971) A class of variable elasticity of substitution production functions, Econometrica, 39, 61–71. Sato, R. (1974) On the class of separable non-homothetic CES functions, Economic Studies Quarterly, 15, 42–55.
© Copyright 2026 Paperzz