Heavy-Flavor Interactions in Medium Ralf Rapp Cyclotron Institute + Dept. of Physics & Astronomy Texas A&M University College Station, TX USA Workshop on Heavy-Quark Physics in Heavy-Ion Collisions ECT* (Trento, Italy), 16.-20.03.15 1.) Introduction: A “Calibrated” QCD Force V [½ GeV] r [½ fm] • Vacuum charm-/bottomonium spectroscopy well described • Confinement ↔ linear part of potential • non-perturbative treatment in medium lattice QCD, potential/T-matrix approach, AdS/CFT, … • relate quarkonia kinetics and heavy-flavor diffusion [Kaczmarek et al ‘03] 1.2 Objectives with Heavy Flavor in URHICs Determine modifications of QCD force in medium + infer consequences for the many-body system • Open heavy-flavor diffusion: Brownian motion - Scattering rates in QGP: widths, quasiparticles? (mQT) - Transport/thermalization: type of interaction (non/pert.,dofs, …) • Quarkonia kinetics - Screening of confining (≥Tc?) + Coulomb (≥2Tc?) force - ϒ states: sequential melting - ψ states: sequential recombination Outline 1.) Introduction 2.) Heavy-Quark Interactions in QGP 3.) Open Heavy-Flavor Transport 4.) Quarkonia: ψ Puzzle(s) 5.) Conclusions 2.1 Free and Internal Energy in Lattice QCD F1(r,T) = U1(r,T) – T S1(r,T) Free Energy - potential • “weak” QQ • small DmQ ~ F1(∞,T)/2 Internal Energy - potential, U = ‹H › • “strong” QQ int • large DmQ ~ U1(∞,T)/2 • F, U, S thermodynamic quantities • Entropy: many-body effects 2.2 Reconstructed Potential from Lattice QCD • static potential from Wilson loop correlator: Real Part Imaginary Part • real part ~ singlet free energy • imaginary part ~ HTL perturbative strongly coupled QGP? [Burnier et al ’14] 2.3 Thermodynamic T-Matrix in QGP • Lippmann-Schwinger equation In-Medium Q-Q T-Matrix: T ( E ; q , q' ) V ( q , q' ) k 2 dk V ( q , k ) G Q0 Q ( E , k ) T ( E ; k , q' ) • thermal 2-particle propagator: G Q0 Q ( E , k ;T ) T D Q ( z , k ) D Q ( E z , k ) • selfenergy: Q ( ,k ) TQ p ( p ) f p ( p ) p q ,g • In-medium potential V? Q q,g = [Cabrera+RR ’06, Riek+RR ‘10] 2.3.2 Free Energy from T-Matrix • Free Energy • Euclidean T-matrix in static limit [Beraudo et al ’08] [S.Liu+RR in progress] • Spectral Function [S.Liu+RR ’15] • Key ingredients: imaginary parts + their dependence • heavy-quark selfenergies from previous T-matrix calculations 2.3.3. Free + Internal Energy from T-Matrix • potential ansatz: lattice data U V F 1.2 Tc r [fm] 1.5 Tc r [fm] 2 Tc r [fm] • remnant of long-range “confining” force in QGP • smaller in-medium quark mass relative to internal energy 2.3.4 Brueckner Theory of Heavy Flavor in QGP Input lattice-QCD free energy 2-body potential Quark selfenergy Process Q→Q 0-modes QQ T-matrix Qq T-matrix Output Test quark-no. susceptibility lattice data spectral fcts./ eucl. correlat. - evolution QQ (rate equation) exp. data Q spectra + v2 (Langevin) Outline 1.) Introduction 2.) Heavy-Quark Interactions in QGP 3.) Open Heavy-Flavor Transport 4.) Quarkonia: ψ Puzzle(s) 5.) Conclusions 3.1 Heavy-Light Scattering Amplitudes New Potential V U-Potential c-q- • “confining” force induces “Feshbach resonances” in Qq T-matrix • strength comparable to internal-energy (U) potential 3.2 Charm-Quark Relaxation Rates • heavy-light T-matrix → HQ transport: g Q p | TQ q |2 ( 1 cos ) f q , g Diffusion Coefficient gc [1/fm] Relaxation Rate p [GeV] [S.Liu+RR in prep] • tc ≈ 3 fm/c close to Tc at low p • 3-mom. + temperature dependence reflect core properties of QCD! 3.3 D-Meson Transport in Hadronic Matter g D | M D h | ( 1 cos ) f 2 gD [fm-1] h • effective D-h scattering amplitudes [He,Fries+RR ’11] • consistent with: - unitarized HQET (pion gas) [Cabrera et al ‘11] - recent works in HRG using similar methods [Tolos+Torres-Ricon ’13, Ozvenchuk et al ‘14] gD [fm-1] • hadron gas at ~Tc: tD ≈ 10fm/c 3.4 Summary of Charm Diffusion in Matter Ds =T/mg : Hadronic Matter vs. QGP vs. Lattice QCD [He et al ’11, Riek+RR ’10, Ding et al ‘11, Gavai et al ‘11] AdS/QCD • shallow minimum near Tc • Quark-Hadron continuity? [Gubser ‘07] 3.5 Heavy-Flavor Transport in URHICs 0 | 0.5 | t [fm/c] 5 | D c • initial cond. (shadowing, • c-quark diffusion Cronin), in QGP liquid pre-equil. fields 10 | • c-quark hadronization • D-meson diffusion in hadron liquid • no “discontinuities” in interaction diffusion toward Tpc and hadronization same interaction (confining!) 3.6 Heavy-Flavor Electrons at √s=62GeV • uncertainties in pp baseline • interplay of Cronin (pA!) + collective flow • sizable medium effects in RCP + v2 Outline 1.) Introduction 2.) Heavy-Quark Interactions in QGP 3.) Open Heavy-Flavor Transport 4.) Quarkonia: ψ Puzzle(s) 5.) Conclusions 4.) Charmonium: y(3686) • easily dissociated in hadronic matter: p, r, ... + y →DD, y → DmedDmed [Grandchamp +RR ‘02] [PBM+Stachel ‘00] • hadronic y dissociation at SPS important ingredient for transport models [Sorge et al ‘97, …] 4.2 Charmonia in d+Au Fireball • construct fireball + evolve rate equat. → y suppression from hot medium • similar in spirit to comover approach [Ferreiro ‘14] • formation time effects?! [X.Du+RR, in prep] [Y.Liu, Ko et al ‘14] 4.3.1 Sequential Recombination of Charmonia in AA Time Evolution pT Spectra • smaller binding → smaller Tdiss → y forms later than J/ψ ! • harder blast wave for ψ formed at later times (hadronic phase!) [X.Du+RR, in prep] 4.3.2 Sequential Recombination vs. Dissociation ψ / J/ψ Double Ratio RAA ψ / RAA J/ψ Nuclear Modification Factor • ψ blast wave fills pt = 3-6 GeV region, primordial for pt > 6 GeV • helps explain CMS double-ratio puzzle • more complex in practice … [X.Du+RR, in prep] 5.) Conclusions • Heavy-quark potential in QGP from lQCD F: Bayesian, T-matrix - Large imaginary parts - Remnants of confinement generate strong coupling • “Critical” consequences for heavy-flavor diffusion • Continuity + minimum of transport coefficient through Tpc • No principal difference between diffusion forces + hadronization • Sequential recombination of charmonia?! (↔ pA) 3.) Quarkonium Transport in Heavy-Ion Collisions • Inelastic Reactions: detailed balance: J/y + g • Rate Equation: dN y dt [PBM+Stachel ’00,Thews et al ’01, Grandchamp+RR ‘01, Gorenstein et al ’02, Ko et al ’02, Andronic et al ‘03, Zhuang et al ’05, Ferreiro et al ‘11, …] → c + c +X ← y ( N y N yeq ) D - D J/y c- c J/y • Theoretical Input: Transport coefficients - chemical relaxation rate y - equililbrium limit Nyeq(eyB, mc* ,tceq) • Phenomenological Input: - J/y,cc,y’+c,b initial distributions [pp, pA] - space-time medium evolution [AA: hydro,...] Observables 3.1 Thermal Charmonium Properties (a) Equilibrium Y number: N yeq V FB 3 g c2 d 3q y ( 2p )3 f ( my ,T ) • gc from fixed cc- number: N c c 1 V FB g c nc ( m *c ,T ) I 1 / I 0 2 • interplay of mc* and m y 2 m *c e yB • constrain spectral shape by lattice-QCD correlators q y eyB mc* (b) Inelastic Y Width Nyeq q • controlled by s (parameter) y 3.3 Inclusive J/y at SPS + RHIC Strong Binding (U) Weak Binding (F) [Zhao+RR ‘10] • Fix two main parameters: s~0.3, charm relax. tceq = 4(2) fm/c for U(F) vs. ~5(10) from T-matrix 3.4 J/y Excitation Function: BES at RHIC PHENIX (forward y) STAR (central y) • suppression pattern varies little (expected from transport) [Grandchamp +RR ’02] • quantitative pp + pA baseline critical to extract systematics 3.5 J/y Predictions at LHC [Zhao+RR ‘11] • regeneration becomes dominant • uncertainties in scc+shadowing • low pT maximum confirms regeneration • too much high-pT suppression? 3.6 (1S) and (2S) at LHC Weak Binding Strong Binding (1S) → (2S) → [Grandchamp et al ’06, Emerick et al ‘11] • sensitive to color-screening + early evolution times • clear preference for strong binding (U potential) • similar results by [Strickland ‘12] • possible problem in rapidity dependence 3.7 Summary of Phenomenology • Quarkonium discoveries in URHICs: - increase of J/y RAA SPS, RHIC → LHC - low-pT enhancement - sizable v2 - increasing suppression of ’ (eB’ ~ eBJ/y ) • Fair predictive power of theoretical modeling - based on description of SPS+RHIC with 2 main parameters • Implications - T0 SPS (~230) < Tdiss(J/y,’) < T0RHIC (~350) < T0LHC(~550) ≤ Tdiss() - confining force screened at RHIC+LHC - marked recombination of diffusing charm quarks at LHC 3.2.2 J/y at LHC: v2 [He et al ’12] • further increase at mid-y 3.1.2 J/y pT Spectra + Elliptic Flow at RHIC (strong binding) • shallow minimum at low pT • high pT: formation time, b feeddown, Cronin • small v2 limits regeneration, but does not exclude it 3.2.2 D-Meson Thermalization at LHC • to be determined… 3.3.4 Time Evolution of J/y at LHC Strong Binding (U) Weak Binding (F) • finite “cooking-time” window, determined by inelastic width [Zhao+RR ‘11] 4.3 J/y at Forward Rapidity at RHIC [Zhao+ RR ‘10] 3.2 Incomplete c-Quark Thermalization • Relaxation time ansatz: Nyeq (t) ~ Nytherm(t) · [1-exp(-t/tceq)] Microscopic Calculation Impact on Regeneration [Zhao+RR ‘11] [Song,Han, Ko ‘12] • regeneration sensitive to charm-quark spectra 3.6.1 Heavy-Flavor Electrons at √s=62GeV Hydro Tune • importance of flow + Cronin effect at lower energies
© Copyright 2026 Paperzz