Electromagnetic probes of a pure-glue initial state in nucleus-nucleus collisions at LHC Volodymyr Vovchenko In collaboration with Iurii Karpenko, Mark Gorenstein, Leonid Satarov, Igor Mishustin, Burkhard Kämpfer, and Horst Stoecker based on arXiv:1604.06346 Transport Meeting ITP, Frankfurt 24 May 2016 HGS-HIRe Helmholtz Graduate School for Hadron and Ion Research 1 / 23 Outline 1 Introduction 2 Equation of state for chemically non-equilibrium QCD matter 3 Hydrodynamic modeling 4 Entropy production 5 Electromagnetic probes of pure glue initial state at LHC 6 Summary 2 / 23 Pure glue scenario Pure glue scenario for ultrarelativistic HIC Created system is initially quarkless Yang-Mills theory is relevant Possible appearance of deconfinement first-order phase transition H. Stoecker et al., J. Phys. G 43, 015105 (2016). 3 / 23 (2+1)-flavor vs YM: equation of state Equation of state for two limiting cases is known from lattice (2+1)-flavor QCD Pure SU(3) Crossover transition from hadrons to QGP First-order deconfinement PT Critical temperature at Tc ' 270 MeV No phase transitions at µ = 0 Borsanyi et al., PLB (2014) Borsanyi et al., JHEP (2012) 6 30 Full QCD 5 Full QCD 5.21 Pure glue Pure glue 25 3 P (GeV/fm ) = 3P P/T 4 4 3 2 1.75 1 20 15 3 10 2 1 5 (a) 0 0 0 100 2 4 6 8 10 0 200 300 400 500 T (MeV) 600 700 800 0 20 40 60 80 100 3 (GeV/fm ) Very different number of degrees of freedom and temperature dependence, but very similar p(e) dependence at high densities 4 / 23 (2+1)-flavor vs YM: ideal hydro results Hydro evolution in limiting cases looks very different Simulation: Glauber IC, normalization to get same T0 , top RHIC energy Much longer evolution in pure SU(3) case, long phase transition, glueballs at freeze-out L.G. Pang, V. Vovchenko, H. Niemi, H. Stoecker, in preparation. 5 / 23 Modeling chemical non-equilibrium In a more realistic scenario quarks appear after some time Slow chem. equil. of quarks Quarks suppressed compared to gluons 1 PYTHIA init.cond. b = 0fm xT < 1.5 fm |ηs|<0.5 fugacity 0.8 0.6 Rough estimates of equil. time from transport models 0.4 0.2 gluons quarks 0 0 1 2 3 4 5 t [fm] T.S. Biro et al., PRC (1993) Z. Xu, C. Greiner, PRC (2005) J.P. Blaizot et al., NPA (2013) 1.0 Model by time-dependent (anti)quark fugacity Ansatz: λq (τ ) = 1 − exp ττ0 −τ eq. 0.8 0.6 =0 fm/c * 0.4 ∗ Equation of state becomes time-dependent =1 fm/c * =5 fm/c 0.2 * =10 fm/c * 0.0 0.1 2 4 6 (fm/c) 8 10 12 6 / 23 Equation of state for chemical non-equilibrium QCD Equation of state for intermediate 0 < λ < 1 needed Lattice-based EoS for chemical non-equilibrium QCD Ansatz: P (T , λ) = λ PFQ (T ) + (1 − λ) PPG (T ) Linear interpolation between limiting cases Can be obtained in several analytic models, i.e. within massless gas of partons1 and modified bag model Pure glue Pure glue Full QCD 400 Full QCD 400 3 P (GeV/fm ) 4 350 2 3 (GeV/fm ) 12 350 300 300 10 3 0.05 GeV/fm 200 2 150 T (MeV) T (MeV) 3 250 250 8 3 0.5 GeV/fm 200 6 150 4 1 100 100 2 50 50 (a) (b) 0 0 0 1 V. 0.2 0.4 0.6 0.8 1 0 0 0 0.2 0.4 0.6 0.8 1 Vovchenko et al., Phys. Rev. C 93, 014906 (2016). Begun, M.I. Gorenstein, O.A. Mogilevksy, IJMPE 20, 1805 (2011). 2 V.V. 7 / 23 Hydrodynamic modeling of a pure glue scenario Modeling: longitudinally boost-invariant (2+1)D ideal hydro to describe √ ALICE Pb+Pb collisions at sNN = 2.76 TeV Code: modified vHLLE (viscous Harten-Lax-van Leer-Einfeldt)3 , Milne coordinates (τ, x, y , η) Modifications: Solution for the space-time profile of the proper time τP of a fluid cell element u µ ∂µ τP (x) = 1 , τP (τ0 , x, y , η) = τ0 . Explicit dependence of equation of state on τP Calculation of electromagnetic observables (photons and dileptons) The dependence P = P(ε, λ) determined from P (T , λ) = λ PFQ (T ) + (1 − λ) PPG (T ) , ε (T , λ) = λ εFQ (T ) + (1 − λ) εPG (T ) . 3 Iu. Karpenko et al., Comput. Phys. Commun. 185, 3016 (2014) code available at GitHub github.com/yukarpenko/vhlle 8 / 23 Initial conditions and hadron spectra Initial conditions: τ0 = 0.1 fm/c and averaged MC-Glauber ε(x, y ) profile Normalization fixed to reproduce hadron spectra in chemical equilibrium, same initial profile used for all other scenarios ALICE, c=0-5% ALICE, c=10-20% ALICE, c=20-30% ALICE, c=30-40% 10 T T T 10 - K d2 N/(2 pi p dp dy) [GeV-2] 102 T d2 N/(2 pi p dp dy) [GeV-2] c=0-5% hybrid, <vT>=0.021 c=0-5% hHKM, <vT>=0.042 10-20% hybrid, <vT>=0.022 10-20% hHKM, <vT>=0.022 20-30% hybrid, <vT>=0.023 30-40% hybrid, <vT>=0.025 π- 3 10 1 10-1 1 10-1 10-20 0.5 1 1.5 pT [GeV] 2 2.5 3 10 0 0.5 1.5 pT [GeV] 2 2.5 3 0.25 antiprotons ALICE 10-20% ALICE 20-30% ALICE 30-40% 0.2 v2(p ) all charged T 1 0.15 T v2 T d2 N/(2 pi p dp dy) [GeV-2] 1 0.1 10-1 ALICE, c=0-5% ALICE, c=10-20% ALICE, c=20-30% ALICE, c=30-40% 0.05 -2 10 0 0.5 1 1.5 pT [GeV] 2 2.5 3 0 0 0.2 0.4 0.6 0.8 1 1.2 pT [GeV] 1.4 1.6 1.8 2 Iu. Karpenko, Yu. Sinyukov, K. Werner, Phys. Rev. C 87, 024914 (2013). 9 / 23 Hydrodynamic evolution 12 0.9 =5 fm/c * 1 155 MeV 10 ALICE 0-20% central Pb+Pb √ sNN = 2.76 TeV 0.9 0.8 0.7 0.75 0.6 6 τ∗ = 5 fm/c 0.5 0.4 4 0.5 2 0.25 λ close to 1 at the end 0.3 0.2 (a) -15 However still smaller than 1 → baryon suppression? 0.1 0 -10 -5 0 5 10 15 x (fm) 1.1 Initial temperatures much higher in PG scenario Very similar T -depedence at the later stages of hydro evolution In PG scenario matter undergoes FOPT 1/2 0-20% Pb+Pb, s 1.0 =2.76 TeV central cell 0.9 =0 fm/c, EoS-FQ 0.8 T (GeV) (fm/c) 8 * 0.7 =5 fm/c, EoS-LI * 0.6 =5 fm/c, ultrarelativistic EoS ( =3P) * 0.5 0.4 0.3 0.2 0.1 With ideal gas QGP EoS cools down too quickly 0.0 0.1 2 4 6 8 10 12 (fm/c) 10 / 23 Hydrodynamic evolution: temperature profile ALICE 0-20% central Pb+Pb @ √ sNN = 2.76 TeV Temperature profile τ∗ = 0 fm/c τ∗ = 5 fm/c 12 T (MeV) 12 =0 fm/c T (MeV) =5 fm/c * 155 * 400 155 10 Dashed: =0 * 400 10 350 350 8 300 200 250 6 200 4 270 2 350 150 (fm/c) (fm/c) 8 300 200 250 6 270 200 FOPT 4 150 350 100 100 2 50 50 (a) -15 (b) -10 -5 0 5 10 15 x (fm) -15 -10 -5 0 5 10 15 x (fm) Longer evolution in PG initial scenario compared to equilibrium case Region with FOPT at T = 270 MeV Much higher temperatures at the initial stage in PG 11 / 23 Entropy production Entropy for chemical non-equilibrium EoS s (T , λ) = λ sFQ (T ) + (1 − λ) sPG (T ) − nq (T , λ) ln λ, λ nq (T , λ) = (PFQ − PPG ). T Initially λ = 0, in the end λ ' 1, in non-equilibrium S not conserved Simple model: gas of massless partons (ε = 3P) and Bjorken-like hydro4 Box Bjorken-like hydro, 2.76 TeV 18 x 10 -3 17 16 Equilibrium QGP 15 uQGP, dS/d 14 uQGP, uQGP, 13 12 0 * * * = 1 fm/c = 5 fm/c = 10 fm/c = 0.1 fm/c 11 (a) 10 0.1 2 4 6 8 10 12 14 (fm/c) 4 V. Vovchenko et al., Phys. Rev. C 93, 014906 (2016). 12 / 23 Entropy production √ ALICE 0-20% central Pb+Pb @ sNN = 2.76 TeV (2+1) hydro with lattice-based EoS Z dS (τ ) = τ d 2 x⊥ γ⊥ (τ, x⊥ )s(τ, x⊥ ) . dη 12 10 =1 fm/c * 6 =5 fm/c * 10 -3 dS/d =0 fm/c * 8 4 2 1/2 0-20% Pb+Pb, s =2.76 TeV 0 0.1 2 4 6 8 10 12 (fm/c) About 25% of total entropy generated during ideal hydro evolution 13 / 23 Electromagnetic probes Photons and dileptons irradiated from all stages of HIC Potentially carry more information about initial stage than hadrons Measured by different experiments: HADES, NA49, RHIC BES, ALICE Models for description Hydrodynamics J.F. Paquet et al., Phys.Rev. C 93, 044906 (2016) H. Hees et al., Nucl. Phys. A 933, 256 (2015) R. Chatterjee et al., Phys. Rev. C 85, 064910 (2012) Coarse-grained transport S. Endres et al., Phys. Rev. C 93, 054901 (2016) T. Galatyuk et al., Eur. Phys. J. A 52, 131 (2016) Microscopic transport O. Linnyk et al., Prog. Part. Nucl. Phys. 87, 50 (2016) M. Greif et al. (2016) 14 / 23 Photons in hydro models Photon production rate Γ(Ẽ, T , λ) convoluted with hydro space-time profile dNγth = d 2 pT dY Z +∞ +∞ Z Z e T (x), λ(x)] , d xT τ dτ dη Γ[E, dNγth 1 = 2π pT dpT dY 2π 2 τ0 Z2π dϕ −∞ dNγth , d 2 pT dY 0 e = pµ uµ = γ⊥ pT cosh(Y − η) − vx cos ϕ − vy sin ϕ in (2+1)D. with E γ Implementation: At each τ step contributions from all transverse cells calculated Very CPU intensive, takes much longer than solving hydro itself Contribution from each cell can be calculated independently ⇒ embarrassingly parallel task Calculation moved to GPU with NVIDIA CUDA ⇒ 20-30x speedup over CPU, photons no longer bottleneck the simulation 15 / 23 Photon production rate QGP emission described by AMY rate5 Applied at T > 155 MeV Chemical non-equilibrium introduces λ factors6 e T , λ) = λ Γ1 + λ2 (Γ − Γ1 ) LA: Γ(E, e T , λ) = λ2 Γ2 + λ (Γ − Γ2 ) UA: Γ(E, In our hydro calculations difference between LA and UA turns out to be rather small Additionally, at T < 155 MeV emission from hadronic stage considered. This includes in-medium ρ-meson and ππ-bremsstrahlung7 , and assumes λ = 1 5 P. Arnold, G. D. Moore, L. G. Yaffe, JHEP 12, 009 (2001). to F.-M. Liu, S.-X. Liu, Phys. Rev. C 89, 034906 (2014). 7 M. Heffernan et al., PRC 91, 027902 (2015); S. Turbide et al., PRC 69, 014903 (2004). 6 Similar 16 / 23 Calculation results: Photon yield Thermal + ’prompt’8 photons Thermal photons 2 10 1/2 Pb+Pb, s 2 10 =2.76 TeV * * * -1 Solid: QGP-UA 10 Dashed: QGP-LA 20-40% -2 T 10 -3 10 -4 10 T > 155 MeV -5 10 cm -6 * 0 10 * = 0 fm/c = 5 fm/c 'prompt' only 10 -2 10 -3 10 1 x 10 , 0-20% -4 10 QGP-UA 0 x 10 , 20-40% T > 155 MeV -5 = 0 Y (b) cm -6 10 = 1 fm/c -1 10 Y (a) 10 -2 = 5 fm/c T T T 0 10 =2.76 TeV 1 = 1 fm/c dN/(2 p dp dY) (GeV ) * -2 dN/(2 p dp dY) (GeV ) x 10 , 0-20% 1/2 Pb+Pb, s = 0 fm/c 1 1 10 = 0 10 0 2 4 p 6 T (GeV/c) 8 10 0 2 4 p 6 T 8 10 (GeV/c) Pure glue scenario has strong effect on high-pT thermal photons High-pT thermal spectrum depends on choice of AMY non-equilibrium rate ’Prompt’ photons dominate high pT of direct photon spectra, pure glue effect is masked, much weaker dependence on details of modeling 8 pQCD pp yield scaled by N coll , taken from J. Adam et al. [ALICE Collaboration], Phys. Lett. B 754, 235 (2016). 17 / 23 Direct photon yield d2N γ dir 1 (GeV-2c 2) 2π N ev. p dp dy Direct photon yield measured experimentally 2 10 1/2 Pb+Pb, s =2.76 TeV ALICE ALICE 20-40% 1 T T Pb-Pb sNN = 2.76 TeV A exp(-p / T eff) T 0-20% ALICE 0-20% 20-40% ALICE 20-40% 40-80% ALICE 102 T 10 * = 0 fm/c T -2 dN/(2 p dp dY) (GeV ) 0-20% 0 10 * -1 10 * = 1 fm/c = 5 fm/c 10 1 x 102 'prompt' only -2 −1 10 10 x 101 -3 10 10−2 1 x 10 -4 10 QGP-UA + Hadronic 10−3 0 x 10 T > 125 MeV -5 10 Y (b) cm -6 = 0 10−4 10 0 2 4 p 6 T (GeV/c) 8 10 10−5 0.5 Paquet et al. arXiv:1509.06738 Linnyk et al. arXiv:1504.05699 v. Hees et al. NPA 933(2015) 256 1 1.5 2 x 100 Chatterjee et al. PRC 85(2012) 064910 + JHEP 1305(2013) 030 2.5 3 3.5 4 p (GeV/c ) T Fair description of data and generally consistent with other models Underestimation of low pT yield in most central collisions Present data does not conclusively discriminate between different scenarios/models 18 / 23 Photon elliptic flow 0.10 v2γ = hcos 2ϕi 0.08 0.06 =0 fm/c p Strong enhance of thermal v2 * =1 fm/c Consequence of initial suppression of production * 0.04 =5 fm/c * 0.02 1/2 0-20% Pb+Pb, s Effect masked by ’prompt’ photons =2.76 TeV 0.00 0.1 2 4 6 8 10 12 (fm/c) 0-40% Pb+Pb, s 0.20 Y cm 1/2 =2.76 TeV (a) 1.0 ALICE preliminary = 0 * 0.15 * 0.10 0.8 = 1 fm/c = 5 fm/c =0 fm/c 0.6 v2 * = 0 fm/c * =1 fm/c * 0.05 0.4 =5 fm/c * 0.00 QGP-UA Thin: thermal -0.05 0.2 T > 155 MeV Thick: direct 0.0 0 1 2 3 p T (GeV/c) 4 5 6 0.1 2 4 6 8 10 12 (fm/c) 19 / 23 Photon elliptic flow Effect of slow quark equilibration was studied before, in particular at RHIC Thermal photon v2 in hydro Direct photon v2 in PHSD P. Moreau et al. A. Monnai Suppression of yield and enhancement of v2 of photons was obtained in hydro A. Monnai, Phys. Rev. C 90, 021901 (2014). F.-M. Liu, S.-X. Liu, Phys. Rev. C 89, 034906 (2014). and microscopic PHSD model, P. Moreau et al., Phys. Rev. C 93, 044916 (2016). BAMPS, M. Greif et al., in preparation. models. 20 / 23 Thermal dileptons Thermal dilepton q q̄ → e+ e− production rate in undersaturated QGP9 Qu dN 2 = Cq λ exp − d 4 xd 4 Q T with Q = p+ + p− = (M⊥ cosh Y , Q⊥ , M⊥ sinh Y ). -1 10 2 -2 dN/(dM dY) (GeV ) -2 Pb+Pb, s 10 1/2 =2.76 TeV 0-20% 20-40% -3 10 -4 * -5 * 10 10 -6 10 * = 0 fm/c = 1 fm/c = 5 fm/c -7 10 -8 10 -9 10 Y Thermal dileptons cm = 0 T>155 MeV -10 10 (a) (b) -11 10 0 2 4 6 2 M (GeV/c ) 8 0 2 4 6 8 10 2 M (GeV/c ) Thermal QGP dilepton yield clearly suppressed in PG initial state scenario Similar result for RHIC within same scenario reported within PHSD10 9 M. 10 P. Strickland, PLB (1994); B. Kämpfer et al., PRC (1995). Moreau et al., Phys. Rev. C 93, 044916 (2016). 21 / 23 Thermal dileptons v2dp = hcos 2ϕi where ϕ is angle between Q⊥ and x-axis. 0.08 Pb+Pb, s Y cm 1/2 =2.76 TeV 0-20% 20-40% = 0 0.06 T > 155 MeV vdp 2 * 0.04 * * = 0 fm/c = 1 fm/c = 5 fm/c 0.02 (b) (a) 0 0 1 2 3 4 2 M (GeV/c ) 5 0 1 2 3 4 5 6 2 M (GeV/c ) Momentum anisotropy of thermal dileptons is clearly enhanced Dileptons appear to be potentially more sensitive 22 / 23 Summary 1 Lattice-based equation of state for chemically non-equilibrium QCD is constructed by linear interpolation of two limiting cases. 2 Evolution of chemically non-equilibrium QGP is modeled by ideal hydrodynamics with time-dependent equation of state. 3 About 25% of total entropy is generated during the ideal hydro evolution of initially pure glue system. 4 Photon and dilepton yields are suppressed in pure glue scenario while their momentum anisotropies are enhanced. Dileptons appear to be more sensitive. Outlook More consistent treatment of hadron observables in chemical non-equilibrium case. Lower energies and/or smaller systems. 23 / 23 Summary 1 Lattice-based equation of state for chemically non-equilibrium QCD is constructed by linear interpolation of two limiting cases. 2 Evolution of chemically non-equilibrium QGP is modeled by ideal hydrodynamics with time-dependent equation of state. 3 About 25% of total entropy is generated during the ideal hydro evolution of initially pure glue system. 4 Photon and dilepton yields are suppressed in pure glue scenario while their momentum anisotropies are enhanced. Dileptons appear to be more sensitive. Outlook More consistent treatment of hadron observables in chemical non-equilibrium case. Lower energies and/or smaller systems. Thanks for your attention! 23 / 23 Backup slides 23 / 23 Photon elliptic flow 0.16 Pb+Pb, s 0.14 Y cm = 0 1/2 =2.76 TeV (a) Thin: thermal v2 20-40% 0-20% T > 155 MeV 0.12 Thick: direct 0.10 (b) QGP-UA * * = 0 fm/c = 1 fm/c 0.08 * = 5 fm/c 0.06 0.04 0.02 0.00 0 1 2 3 p T (GeV/c) 4 5 0 1 2 3 p T 4 5 6 (GeV/c) 23 / 23
© Copyright 2026 Paperzz