Phishing Microsoft Vulnerabilities • Sharp increase in attacks on Windows based PCs in 1st half of 2004 – 1237 new vulnerabilities or 48/week • Increase in number of bot networks – 30,000 from 2,000 in previous 6 months • Increase in percent of e-commerce attacks from 4% to 16% • 450% increase in new Windows viruses – 4,496 Spam and E-commerce • Tim Pigot, Pfizer’s men’s sexual health division – Pfizer is not the source of Viagra spam – “I, unfortunately get a lot of Viagra spam myself… We’d love to be able to talk more intimately with the people who are interested in engaging with us that way. If we didn’t live in a world full of Viagra spam it would be easier.” • DoubleClick survey – the rate at which customers open commercial e-mail attached adverts is on the decline. Possible causes? – Spam fatigue – Fear of phishing Introduction to Cryptography Cryptography • Why is cryptography used? • What applications make use of cryptography? • What skills make a good crypto-analyst? Anagrams Conversation Voices rant on Desperation A rope ends it Militarism I limit arms Eric Clapton Narcoleptic Madonna Louise Ciccone Occasional nude income George Bush He bugs Gore Terms • • • • • Cryptography Plaintext Ciphertext Algorithm Key Symmetric Encryption • Plaintext + algorithm = ciphertext Ciphertext + algorithm = plaintext • Problems – 1. The algorithm must be good, and 2. What do you do about people entering and leaving the cryptogroup Use of a Key • Plaintext + algorithm + key = ciphertext Ciphertext + algorithm – key = plaintext • Algorithms are symmetric because both parties share the same key Vigenére’s Cipher 1) Select a key – say 1, 23, 14, 6 2) The 1st letter of the plaintext message is encrypted finding the plaintext letter in row 1 and reading the ciphertext letter as the column heading, the 2nd letter using row 23, the 3rd using row 14, the 4th using row 6, the 5th using row 1, etc. 3) To decrypt, find the ciphertext letter in the column heading of the appropriate row and read the plaintext letter in the cell below. Vigenére’s Cipher Example Using the key 1, 23, 14, 6 EVERYONE is encrypted as DZQLXRAZ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z B C D E F G H I J K L M N O P Q R S T U V W X Y Z A C D E F G H I J K L M N O P Q R S T U V W X Y Z A B D E F G H I J K L M N O P Q R S T U V W X Y Z A B C E F G H I J K L M N O P Q R S T U V W X Y Z A B C D F G H I J K L M N O P Q R S T U V W X Y Z A B C D E G H I J K L M N O P Q R S T U V W X Y Z A B C D E F H I J K L M N O P Q R S T U V W X Y Z A B C D E F G I J K L M N O P Q R S T U V W X Y Z A B C D E F G H J K L M N O P Q R S T U V W X Y Z A B C D E F G H I K L M N O P Q R S T U V W X Y Z A B C D E F G H I J L M N O P Q R S T U V W X Y Z A B C D E F G H I J K M N O P Q R S T U V W X Y Z A B C D E F G H I J K L N O P Q R S T U V W X Y Z A B C D E F G H I J K L M O P Q R S T U V W X Y Z A B C D E F G H I J K L M N P Q R S T U V W X Y Z A B C D E F G H I J K L M N O Q R S T U V W X Y Z A B C D E F G H I J K L M N O P R S T U V W X Y Z A B C D E F G H I J K L M N O P Q S T U V W X Y Z A B C D E F G H I J K L M N O P Q R T U V W X Y Z A B C D E F G H I J K L M N O P Q R S U V W X Y Z A B C D E F G H I J K L M N O P Q R S T V W X Y Z A B C D E F G H I J K L M N O P Q R S T U W X Y Z A B C D E F G H I J K L M N O P Q R S T U V X Y Z A B C D E F G H I J K L M N O P Q R S T U V W Y Z A B C D E F G H I J K L M N O P Q R S T U V W X Z A B C D E F G H I J K L M N O P Q R S T U V W X Y Polybius Square 1) Put the letters of the alphabet in a 5X5 matrix. 2) The code for a letter is its (row,column) 3) To decode a letter look at the cell with the (row,column). For example, 23 means row 2, column 3. Example 1 2 3 4 5 1 a b c d e 2 f g h i j 3 k l m n o 4 p q r s t 5 u v w x y/z Encode EVERYONE 15 52 15 43 55 35 34 15 Letter frequencies in English Letter A B C D E F G H I J K L M Frequency 8.04% 1.54 3.06 3.99 12.51 2.30 1.96 5.49 7.26 0.16 0.67 4.14 2.53 Letter N O P Q R S T U V W X Y Z Frequency 7.09% 7.60 2.00 0.11 6.12 6.54 9.25 2.71 0.99 1.92 0.19 1.73 0.09 To add complexity 1) Add a key phrase to change the ordering of the letters in the matrix. 2) Separate the plaintext into 8 letter groups removing blanks. 3) Encode by making the numbers for each 8 letter group as follows: r(1,2), r(3,4), r(5,6), r(7,8), c(1,2), c(3,4), c(5,6), c(7,8) Example showing transposition 1 2 3 4 5 1 a b c d e 2 f g h i j 3 k l m n o 4 p q r s t 5 u v w x y/z Encode EVERYONE 15 14 53 31 52 53 55 45 Example of using a key phrase to create a Polybius square Lazy grey fox jumps over the quick brown dog 1 2 3 4 5 1 l a z y g 2 r e f o x 3 j u m p s 4 v t h q i 5 c k b w n/d The Problem of Key Distribution • Keys must be distributed securely and changed regularly • Keys must also be used securely and destroyed securely Recognizing Plaintext • How do you recognize plaintext? It looks like it is supposed to, e.g. English, an image • Unicity distance – the amount of ciphertext required that reasonable appearing plaintext is the true plaintext • Unicity distance for standard English = K/6.8 where K = key length in bits and 6.8 is the natural redundancy in English
© Copyright 2026 Paperzz