Ch. 1 – Function Transformations Basic Functions/Horizontal & Vertical Translations Here are the Basic Functions (and their coordinates!) you need to get familiar with. 1. Quadratic functions (a.k.a. parabolas) y x2 Ex. y ( x 2)2 1 2. Radical functions (a.k.a. square root function) y x Eg1. Ex. y x 3 4 Find the equations for the base functions and their transformed graphs. a) Base function: Transformed function: b) Base function: Transformed function: Eg3. Transform the following graph. Describe the transformations in words. Given: y f ( x) Graph: y f ( x 2) 3 Transformation: ________________________________________________________________ Regardless of the type of function y f ( x) , the transformed function y f ( x h) k means: --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Vertical & Horizontal Reflections A reflection can be identified with a “negative sign.” A reflection is a mirror image of a given function. Let’s explore the effect of having a “negative sign” at different locations of a function – use a graphing calculator to check! Eg1. Graph y x 2 and y x 2 on the same grid. Eg2. Graph y x and y x on the same grid. Observations: * ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------* ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Expansions and Compressions Eg1. Consider the following function: f x x Graph the indicated function using the table of values on the graphing calculator: a) y 2 f x b) y 1 f x 2 c) y f 2 x 1 d) y f x 2 Combining Transformations Does order matter? Let’s explore… Eg1. Graph y x x y Vertical Expansion vs. Vertical Translation: 1. VE by factor of 2 2. VT by 1 unit down (Reverse Order) 1. VT by 1 unit down 2. VE by a factor of 2 CREATING A WRITTEN FUNCTION [y=f(x)]: Follow the instructions in the given order. a) VE of 2 b) HE of 2 VT down 3 VT up 1 HT right 1 VC of 1/6 HC of 1/3 HT left 6 Eg3. Describe the order of transformations that occur for the following functions. a) y 3 f 2x 4 b) y f 2 x 1 c) y f (2 x 4) 1 d) y 2 f x 1 5 3 Eg4. Given y f ( x) on the right. a) Describe the transformations below. y 2 f 1 2 x 3 b) Graph the indicated function transformations on the grid provided. ** With regards to order, any vertical change is NOT in competition with any horizontal change!
© Copyright 2026 Paperzz