Cykl Krebsa, łańcuch oddechowy i elementy bioenergetyki A skąd acetylo-CoA? Glukoza; 6C Glikoliza Glukoneogeneza 2 x Pirogronian; 3C Obecność tlenu 2 x NADH i 2 x CO2 2 x Acetylo-koenzym A (Ac-CoA); 2C Brak tlenu (Fermentacja) 2 x Mleczan Dekarboksylacja oksydacyjna pirogronianu CoA-SH Dekarboksylacja oksydacyjna pirogronianu Co dalej z Ac-CoA? szczawiooctan cytrynian FADH2 FAD FADH2 FAD FADH2 FAD Cykl Krebsa inaczej cykl kwasu cytrynowego cyklu zachodzi Krebsa w mitochondriach • Efekt Całkowite utlenienie “glukozy”! • • 3 x NADH 1 x FADH • • 1 x GTP 2 = 1 x ATP Przekaźniki elektronów FADH2 NADH Glukoza Glukoneogeneza Glikoliza Cykl Krebsa Pirogronian CO2 Glukoza β-oksydacja Glukoneogeneza Glikoliza Cykl Krebsa Pirogronian CO2 β-oksydacja inaczej cykl kwasu cytrynowego zachodzi w mitochondriach β-oksydacja • • Ostateczny produkt, ac-CoA, inaczej cykl kwasu cytrynowego Utlenianie kwasów tłuszczowych zachodzi w mitochondriach przekazywany jest do cyklu Krebsa • Przy każdej rundzie β-oksydacji powstaje: • 1 x NADH, 1 x FADH • 1 x ac-CoA 2 β-oksydacja inaczej cykl kwasu cytrynowego zachodzi w mitochondriach • A po β-oksydacji 16:0? 7 x NADH, 7 x FADH • • 7 x ac-CoA (jako produkt każdego 2 “cyklu” β-oksydacji) • 1 x ac-CoA (jako ostateczna forma KT) Ciała ketonowe • Kwas acetylooctowy • Produkt pośredni β-oksydacji • Możliwa synteza z 2 ac-CoA • Szczególnie przy braku glukozy • Prowadzi do kwasicy ketonowej Jakie są dalsze losy NADH i FADH2? Potencjał oksydoredukcyjny NADH H+ + H + H+ H H+ + H H+ H+ + H + H H+ e H+ H+ H+ + H H+ H+ H+ NADH = NAD+ + 2e- + H+ H+ H+ H+ H+ H+ + + H H + + H H H+ H+ H+ H+ H+ H+ H+ H+ H+ H+ H + H+ H+ H+ H+ + H H+ H+ H+ H+ H+ H+ H+ + + H H + + H H e NADH = NAD+ + 2e- + H+ H+ H+ H+ H+ H+ H+ H+ H+ H+ H+ H + H+ H+ H+ H+ + H H+ H+ H+ H+ H+ H+ H+ + + H H + + H H e O2 NADH = NAD+ + 2e- + H+ O2 O2 H+ H+ H+ H+ H+ H+ H+ H+ H+ H+ H + H+ H+ H+ H+ + H H+ H+ H+ H+ H+ H+ H+ + + H H + + H H e NADH = NAD+ + 2e- + H+ 2 x H2O 2 x H2O 2 x H2O H+ + H + + + H H + + + + H H H H + H + + H + + H H + H H H H+ + H + + + H H + + + + + + H H H + + H H H H + + H H H H+ H+ H H+ + H + + + H H + + + H H H H + + + H + H H H H+ H+ + H + + + H H + + + + + H H H H + + H H + + + + H H H H H H H+ H+ H+ H+ + H + + + H H + + + H H H H + + + H + H H H H+ H+ + H + + + H H + + + + + H H H H + + H H + + + + H H H H H H H+ H+ H+ } Łańcuch transportu elektronów Wykorzystanie energii elektronów do wyrzutu H+ do przestrzeni międzybłonowej mitochondrium Chemiosmoza Wykorzystanie energii potencjalnej w postaci różnicy stężeń H+ do syntezy ATP Fosforylacja oksydacyjna Koszt transportu Rozprzęganie Trucizny • Kompleks I: rotenon • Kompleks III: antymycyna A • Kompleks IV: cyjanki, azydki, CO? Bilans energetyczny pełnego utlenienia 1 cząsteczki glukozy liczba protonów przeniesionych do przestrzeni miêdzyb≥onowej glukoza ATP glikoliza pirogronian 2 2 NADH 20 2 NADH 20 acetylo-CoA cykl Krebsa 2 6 NADH 60 2 innyFADH przekaŸnik 2 12 -4 na transport + H NADH i ATP 24,94 112 112 108 ok. ok.29 26 + Dlaczego 112 H daje ok. 26 cząsteczek ATP? + Dlaczego 112 H daje ok. 26 cząsteczek ATP? + H /ATP Stosunek wynosi(ł) ok. 4,33 + + Comparison of the H /ATP ratios of the H -ATP synthases from yeast and from chloroplast Jan Petersena, Kathrin Försterb, Paola Turinac, and Peter Gräberb,1 a Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia; bDepartment of Physical Chemistry, University of Freiburg, D-79104 Freiburg, Germany; and cLaboratory of Biochemistry and Biophysics, Department of Biology, University of Bologna, I-40126 Bologna, Italy Edited by Pierre A. Joliot, Institut de Biologie Physico-Chimique, Paris, France, and approved May 28, 2012 (received for review February 24, 2012) F0F1-ATP synthases use the free energy derived from a transmembrane proton transport to synthesize ATP from ADP and inorganic phosphate. The number of protons translocated per ATP (H+/ATP ratio) is an important parameter for the mechanism of the enzyme and for energy transduction in cells. Current models of rotational catalysis predict that the H+/ATP ratio is identical to the stoichiometric ratio of c-subunits to β-subunits. We measured in parallel the H+/ATP ratios at equilibrium of purified F0F1s from yeast mitochondria (c/β = 3.3) and from spinach chloroplasts (c/β = 4.7). The isolated enzymes were reconstituted into liposomes and, after energization of the proteoliposomes with acid–base transitions, the initial rates of ATP synthesis and hydrolysis were measured as a function of ΔpH. The equilibrium ΔpH was obtained by interpolation, and from its dependency on the stoichiometric ratio, [ATP]/([ADP]·[Pi]), finally the thermodynamic H+/ATP ratios were obtained: 2.9 ± 0.2 for the mitochondrial enzyme and 3.9 ± 0.3 for the chloroplast enzyme. The data show that the thermodynamic H+/ATP ratio depends on the stoichiometry of the c-subunit, although it is not identical to the c/β ratio. chemiosmotic theory C | protonmotive force | bioenergetics | nanomachine ells of all life kingdoms use H+-ATP synthases to produce the cellular energy carrier ATP from the energy of a transmembrane electrochemical potential difference of protons built up and maintained by proton transport mechanisms, such as the oxidative electron transport in mitochondria or the photoinduced electron transport in chloroplasts (1). The number of protons translocated for each synthesized ATP molecule (H+/ stoichiometry of the latter is 14, according to X-ray crystallography (14, 15) and atomic force microscopy of the isolated c-ring (16). Hence, their respective H+/ATP ratios, based on the assumptions mentioned above, should be 3.3 and 4.7. We have isolated the two complexes and reconstituted them into liposomes, which, if subjected to acid–base transitions to generate a high protonmotive force, were able to synthesize ATP at physiological rates (17, 18). The technique of acid–base transitions offers the great advantages of (i) measuring the imposed transmembrane ΔpH with the accuracy of the pH electrode, thus making high-precision quantitative studies possible (18–20), and (ii) allowing the testing of ATP synthases from different species with the same method and under identical experimental conditions. Results According to the chemiosmotic theory (1), the synthesis of ATP catalyzed by the H+-ATP synthase is coupled to the translocation of n protons from the internal to the external compartment: ADP þ Pi þ nH þ in ↔ ATP þ H2 O þ nH þ out : [1] The factor n is the number of protons translocated per ATP, and it is called the thermodynamic H+/ATP ratio. The Gibbs free energy of this coupled reaction can be expressed as: μHþ ΔG′ ¼ ΔG′p − nΔ~ ¼ ΔG8′p þ 2:3 RT logðQÞ − nð2:3 RT ΔpH þ FΔφÞ; [2] + + Comparison of the H /ATP ratios of the H -ATP synthases from yeast and from chloroplast Jan Petersena, Kathrin Försterb, Paola Turinac, and Peter Gräberb,1 a Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia; bDepartment of Physical Chemistry, University of Freiburg, D-79104 Freiburg, Germany; and cLaboratory of Biochemistry and Biophysics, Department of Biology, University of Bologna, I-40126 Bologna, Italy Edited by Pierre A. Joliot, Institut de Biologie Physico-Chimique, Paris, France, and approved May 28, 2012 (received for review February 24, 2012) F0F1-ATP synthases use the free energy derived from a transmembrane proton transport to synthesize ATP from ADP and inorganic phosphate. The number of protons translocated per ATP (H+/ATP ratio) is an important parameter for the mechanism of the enzyme and for energy transduction in cells. Current models of rotational catalysis predict that the H+/ATP ratio is identical to the stoichiometric ratio of c-subunits to β-subunits. We measured in parallel the H+/ATP ratios at equilibrium of purified F0F1s from yeast mitochondria (c/β = 3.3) and from spinach chloroplasts (c/β = 4.7). The isolated enzymes were reconstituted into liposomes and, after energization of the proteoliposomes with acid–base transitions, the initial rates of ATP synthesis and hydrolysis were measured as a function of ΔpH. The equilibrium ΔpH was obtained by interpolation, and from its dependency on the stoichiometric ratio, [ATP]/([ADP]·[Pi]), finally the thermodynamic H+/ATP ratios were obtained: 2.9 ± 0.2 for the mitochondrial enzyme and 3.9 ± 0.3 for the chloroplast enzyme. The data show that the thermodynamic H+/ATP ratio depends on the stoichiometry of the c-subunit, although it is not identical to the c/β ratio. chemiosmotic theory C | protonmotive force | bioenergetics | nanomachine ells of all life kingdoms use H+-ATP synthases to produce the cellular energy carrier ATP from the energy of a transmembrane electrochemical potential difference of protons built up and maintained by proton transport mechanisms, such as the oxidative electron transport in mitochondria or the photoinduced electron transport in chloroplasts (1). The number of protons translocated for each synthesized ATP molecule (H+/ stoichiometry of the latter is 14, according to X-ray crystallography (14, 15) and atomic force microscopy of the isolated c-ring (16). Hence, their respective H+/ATP ratios, based on the assumptions mentioned above, should be 3.3 and 4.7. We have isolated the two complexes and reconstituted them into liposomes, which, if subjected to acid–base transitions to generate a high protonmotive force, were able to synthesize ATP at physiological rates (17, 18). The technique of acid–base transitions offers the great advantages of (i) measuring the imposed transmembrane ΔpH with the accuracy of the pH electrode, thus making high-precision quantitative studies possible (18–20), and (ii) allowing the testing of ATP synthases from different species with the same method and under identical experimental conditions. Results According to the chemiosmotic theory (1), the synthesis of ATP catalyzed by the H+-ATP synthase is coupled to the translocation of n protons from the internal to the external compartment: ADP þ Pi þ nH þ in ↔ ATP þ H2 O þ nH þ out : [1] The factor n is the number of protons translocated per ATP, and it is called the thermodynamic H+/ATP ratio. The Gibbs free energy of this coupled reaction can be expressed as: μHþ ΔG′ ¼ ΔG′p − nΔ~ ¼ ΔG8′p þ 2:3 RT logðQÞ − nð2:3 RT ΔpH þ FΔφÞ; [2] Oddychanie tlenowe glukoza dro¿d¿e 2 ATP alkohol etylowy CO2 CO2 glikoliza pirogronian komórki miêœniowe bakterie mlekowe mleczan reakcja pomostowa acetylo-CoA 2 ATP cykl Krebsa NADH O2 ok. 26 25 ATP ≥añcuch oddechowy H2O Porównanie Glukoza KT 16:0 NADH 10 7 + 8 x 3 = 31 FADH2 2 7 + 8 x 1 = 15 Protony 10 x 10 + 2 x 6 = 112 31 x 10 + 15 x 6 = 400 ATP ok. 26 ok. 92 Ostatecznie ok. 30 ok. 99 (= 92 - 1 + 8) A jak nie ma tlenu? Fermentacja glukoza glikoliza pirogronian O2 du¿o ATP ma≥o O2 mleczan ATP Glukoza; 6C Glikoliza Glukoneogeneza 2 x Pirogronian; 3C Obecność tlenu 2 x NADH i 2 x CO2 2 x Acetylo-koenzym A (Ac-CoA); 2C Dużo ATP = ok. 30 cząsteczek Brak tlenu (Fermentacja) 2 x Mleczan Mało ATP = 2 cząsteczki FADH2
© Copyright 2026 Paperzz