Danish sustainable offshore decommissioning Decommissioning of an oil rig in the Ekofisk oil field A risk assessment March 2013 orth Sea Danish sustainable offshore decommissioning Decommissioning of an oil rig in the Ekofisk oil field A risk assessment March 2013 Prepared for Offshore Center Denmark Offshore Center Danmark Danish Sustainable Offshore Decommissioning Decommissioning of an oil rig in the Ekofisk oil field A risk assessment March 2013 Authors: Frank Thomsen, DHI Henriette Bitsch Schack, DHI Publisher Offshore Center Danmark Dokvej 3 6700 Esbjerg Tel. + 45 36 97 36 70 www.offshorecenter.dk This is a published document where copyright rests with the Offshore Center Denmark and consortium members. All rights reserved. Information contained in this document are owned by the aforementioned parties and supplied without liability for errors or omissions. No part may be reproduced or used except as permitted by contract or other written permission. Contents 1 Introduction...................................................................................................................................................1 2 Introductionintounderwatersound.....................................................................................................1 3 3.1 3.2 3.3 3.4 Potentialnoiselevelsfromdecommissioningandestimatedbackgroundnoiselevels.......2 Explosives/cuttingusingexplosives...........................................................................................................................2 Drilling......................................................................................................................................................................................3 Shipping...............................................................................................................................................................................4 Backgroundnoise................................................................................................................................................................5 4 4.1 4.2 4.3 5 Underwaterhearinginharbourporpoises,whitebeakeddolphins,killerwhales, Northernminkewhales,AtlanticherringandAtlanticcod............................................................6 Underwaterhearingandsoundproductioninharbourporpoises,whitebeakeddolphinsand killerwhales...........................................................................................................................................................................6 Hearingandsoundproductioninnorthernminkewhales...............................................................................9 HearingandsoundproductioninAtlanticherringandAtlanticcod............................................................9 5.1 5.2 5.3 5.4 6 Estimationofpotentialeffectsofdecommissioningnoiseandtheresultingimpactzones foronharbourporpoise,whitebeakeddolphin,killerwhale,minkewhale,Atlantic herringandAtlanticcod..........................................................................................................................11 Definitionsofzonesofimpact.....................................................................................................................................11 Impactzonesforexplosives.........................................................................................................................................14 Impactzonesfordrilling................................................................................................................................................14 Impactzonesforshipping.............................................................................................................................................15 7 OverallConclusion.....................................................................................................................................19 8 References....................................................................................................................................................20 Occurrenceofharbourporpoise,whitebeakeddolphin,killerwhale,minkewhale, AtlanticherringandAtlanticcodinthecentralNorthSea...........................................................15 Tabels Table5.1 Table5.2 Table5.3 CriteriausedforcalculatingthezonesofimpactforPTS/TTS,avoidancebehaviourandmaskinginthesix marineanimalsinvestigated:Harbourporpoise,white‐beakeddolphin,killerwhale,northernminkewhale, Atlanticherring,andAtlanticcod..................................................................................................................................................13 Zonesofimpacttodrillingnoise,definingzonesofPTS/TTS,avoidancebehaviourandmaskinginthe harbourporpoise,white‐beakeddolphin,killerwhale,northernminkewhale,Atlanticherring,andAtlantic cod.ThedrillingnoiseusedisfromRichardsonetal.1995...............................................................................................14 Zonesofimpacttoshippingnoise,definingzonesofPTS/TTS,avoidancebehaviourandmaskinginthe harbourporpoise,white‐beakeddolphin,killerwhale,northernminkewhale,Atlanticherring,andAtlantic cod.TheshippingnoiseusedinfromArvensonandVendittis2000.............................................................................15 Rambøll_Decommissioning_Report_31-08-12 i Figures Figure3.1 Peaksoundpressurelevelsat1mandpeakfrequencyofexplosionsof0.5,2and20kgTNT.Modifiedfrom Richardsonetal.1995...........................................................................................................................................................................3 Figure3.2 Sourcelevelsfromtwodifferentdrillingshipsin1/3octavebands.ModifiedfromRichardsonetal.1995..4 Figure3.3 Noisefromfourdifferentvesseltypesin1/3octavebands.Tug/bargeandsupplyshipnoiseismodified fromRichardsonetal.1995.MerchantshipnoiseismodifiedfromArvesonandVendittis2000,and containershipismodifiedfromMcKennaetal.2012.Recordingdistanceback‐calculatedto1m......................5 Figure3.4Backgroundnoisein1/3octavebandlevels.ThedarkbluelineistheWenzcurveforhighshippingnoiseanda windspeed4‐6m/s,modifiedfromWenz1962.Theorangelineisnoisemeasuredattheportof Rotterdam,modifiedfromDreschleretal.2009.Thelightbluelineandtheredlinearetheminimumand maximumvalues,respectively,ofnoisemeasurementsmadeclosetotheEkofiskareausingsonobuoys, modifiedfrom(Liddell2011).............................................................................................................................................................6 Figure4.1 AudiogramsforharbourporpoisesmodifiedfromKasteleinetal.2002,Andersen1970andPopovetal. 1986..............................................................................................................................................................................................................7 Figure4.2 Audiogramforwhitebeakeddolphin(Lagenorhynchusalbirostris)modifiedfromNachtigalletal.2008...8 Figure4.3 Audiogramoftwokillerwhales(Orcinusorca)modifiedfromSzymanskietal.1999............................................9 Figure4.4 AudiogramforAtlanticherringmodifiedfromEnger1967..............................................................................................10 Figure4.5 AudiogramsforAtlanticcod(Gadusmorhua)modifiedfromBuerkle1967,ChapmanandHawkins1973 andOffutt1974.......................................................................................................................................................................................11 Figure5.1 Detectiondistanceoflowdrill‐shipnoisebyaharbourporpoise...................................................................................14 Figure5.2 Detectiondistanceofshippingnoisefromalargemerchantshipbyawhite‐beakeddolphin............................15 Figure6.1 SightingsofharbourporpoiseduringtheshipboardandaerialsurveysoftheSCANS‐IIsurvey.From Hammondetal.2006...........................................................................................................................................................................16 Figure6.2 Averageallyeardistributionbasedon26harbourporpoisestaggedinSkagen.FromTeilmannetal.2008.17 Figure6.3 Distributionofkillerwhalesbasedonsightingsmadebetween1970‐2006.FromFooteetal.2007)............18 ii Rambøll_Decommissioning_Report_31-08-12 1 Introduction Decommissioningofcurrentlyexistingoffshoreoil‐rigsisexpectedtobecomemorefrequentin theyearstocome,asoldrigsmustberemovedorreplacedbynewones.IntheEkofiskoilfield intheNorthSeasuchdecommissioningactivitiesarealsoexpectedinthefuture.Thefollowing sections present predictions of the sound produced by three different activities (explo‐ sions/cuttingusingexplosives,drillingandshipping)associatedwithdecommissioningofanoil rig, based on previously published data from such activities. The relationship between these soundlevelsandtheresponseofthemarinemammalsandfishknowntoinhabitthesewatersis establishedregardingdetection,masking,behaviouralresponseandhearingloss(temporaryor permanent)forsomekeyspecies.Theresultsarecomparedtotheknowndistributionofmarine mammalsintheNorthSea.Anestimateofthenumberofindividualspresumablyexposedtothe impactsismade.Basedonthesefindingstheoverallestimatedeffectsonmarinemammalsand fishfromthedecommissioningofanoilrigintheareaisdiscussed. Four species of cetaceans are regularly observed in the Northern North Sea. Three are odon‐ tocetes:theharbourporpoise(Phocoenaphocoena),thewhitebeakeddolphin(Lagenorhynchus albirostris),andthekillerwhale(Orcinusorca).Theyareallknownfortheiruseofecholocation. ThefourthspeciesistheNorthernminkewhale(Balaenopteraacutorostrata),abaleenwhale. Theareaisalsohometoawidevarietyoffishspecies.Twocommerciallyimportantspeciesof fish,theAtlanticherring(Clupeaharengus)andtheAtlanticcod(Gadusmorhua),willbeusedas exampleswhendiscussingtheeffectsofdecommissioningactivitiesonfishinthearea. 2 Introduction into underwater sound Forabetterunderstandingofthetechnicaltermsusedinthisreport,thissectionwillprovidea shortintroductionintounderwatersound. Soundinwaterisatravellingwaveinwhichparticlesofthemediumarealternatelyforcedto‐ getherandthenapart.Thesoundcanbemeasuredasachangeinpressurewithinthemedium, which acts in all directions, described as the sound pressure. The unit for pressure is Pascal (Newtonpersquaremetre). Eachsoundwavehasapressurecomponent(inPascals)andaparticlemotioncomponentindi‐ catingthedisplacement(metres),thevelocity(metrespersecond)andtheacceleration(metres persecond2)ofthemoleculesinthesoundwave.Dependingontheirreceptormechanisms,ma‐ rinelifeissensitivetoeitherpressureorparticlemotionorboth.Thepressurecanbemeasured withapressuresensitivedevicesuchasahydrophone(anunderwatermicrophone). Duetothewiderangeofpressuresandintensitiesandtakingthehearingofmarinelifeintoac‐ count,itiscustomarytodescribetheseusingalogarithmicscale.Themostgenerallyusedloga‐ rithmicscalefordescribingsoundisthedecibelscale(dB). Thesoundpressurelevel(SPL)ofasoundisgivenindecibels(dB)by: SPL(indB)=20log10(P/P0) wherePisthemeasuredpressurelevelandP0isthereferencepressure.Thereferencepressure in underwater acoustics isdefined as 1micropascal (µPa). Asthe dB value isgiven on a loga‐ rithmicscale,doublingthepressureofasoundleadstoa6dBincreaseinsoundpressurelevel. Rambøll_Decommissioning_Report_31-08-12 1 1 Asthereferencepressureformeasurementsinairis20µPa,andwaterandairdifferacoustical‐ ly,thedBlevelsforsoundinwaterandinaircannotbecompareddirectly. Mostterrestrialanimals,aswellasthemarinemammalsdiscussedinthefollowing,aresensi‐ tivetosoundpressure.Fishandmanyinvertebratesontheotherhandarealsosensitivetothe localparticlemotionofthesoundfield. 3 Potentialnoiselevelsfromdecommissioningandestimated backgroundnoiselevels Accordingtotheinformationsuppliedbytheclient,thereareavarietyofactivitiesinvolvedin thedecommissioningprocess.Fromtheinitialdescription,thelikelynoisegeneratingactivities whichwillhavetobeassessedareshipping(toandfromthesiteandduringthedecommission‐ ingworks),cuttinganddrilling.However,thereisnoinformationoncuttingsound.Thefollow‐ ing sections will therefore concentrate on noise from three types of activities associated with decommissioning1)explosions,whichalsoincludesexplosivesusedforcutting,2)shippingac‐ tivitiesofvesselsofdifferentsizes,and3)drillingfromdrill‐shipsandjack‐upplatforms. Wethinkthattheinclusionofexplosivescanbeofbenefittotheclientevenifitisnotexplicitly plannedtouseit,asthismethodofdecommissioningisinuseinotherareas(seeOSPAR2009 forareview). 3.1 Explosives/cutting using explosives The frequency content of explosions is characterized by being broad band. The signals are of shortdurationandhaveaveryshortrisetime.Closetothesourcetheshockwavecancausetis‐ suedamage.Theveryshortrisetimecausestheformationofairbubblesandinthetissue,this tears the cells apart (Elsayed 1997). Explosions from TNT have higher peak frequency the smallerthechargeis,andthesourcelevelisdirectlyrelatedtothesizeofthechargeused(Rich‐ ardsonetal.1995).Cuttingtechniquesusingshockwavefocusingreducethechargesizeneces‐ sary,thereby reducingtheresulting sound pressure(Continental Shelf Associates, Inc. 2004). Thepeaksourcelevelsandmajorfrequencycontentfromthreedifferentchargesizes(Richard‐ sonetal.1995)areshowninfigure3.1. 2 2 Rambøll_Decommissioning_Report_31-08-12 280 20 kg TNT 2 kg TNT 0.5 kg TNT 278 dB re 1 µPa peak 276 274 272 270 268 266 0 10 Figure 3.1 1 10 Frequency(Hz) 10 2 Peak sound pressure levels at 1 m and peak frequency of explosions of 0.5, 2 and 20 kg TNT. Modified from Richardson et al. 1995 These source level pressure measurements also include the pressure from the initial shock wave.Closetothesourcethispressuredropsoffrapidlyasmuchoftheinitialenergyislostdue to heat dissipation, andatsmaller depths, energy isalso lost by pressure releaseatthe water surface(Richardsonetal.1995). 3.2 Drilling Noisefromdrillingoperationsdependslargelyontheplatformusedfordrilling.Drill‐shipspro‐ ducethehighestnoiselevels,whereasnoisefrombottomfoundeddrillingrigssuchasjack‐up rigsislikelylowinbothsourcelevelsandfrequencycontent(<1.2kHz;Richardsonetal.1995). Noisefromtwodrill‐shipsisshowninFigure3.2,andisusedinthefollowingastheworstcase scenariofordrillingnoise,asthenoisemostlikelywillnotexceedtheselevels. Rambøll_Decommissioning_Report_31-08-12 3 3 180 175 dB re 1 µPa 170 165 160 155 150 145 1 10 Figure 3.2 10 2 Frequency (Hz) 10 3 10 4 Source levels from two different drilling ships in 1/3 octave bands. Modified from Richardson et al. 1995 Thespectralenergyofthenoisefromthetwodrilling‐vesselsismainlyfoundbelow1kHz,and anyeffectsonanimalsmaythereforebemostpronouncedinanimalswithapredominantlylow frequencyhearing. 3.3 Shipping Shippingintheworld’soceanshasincreasedsincethemid‐twentiethcentury(NRC2003),and assuchshippingnoiseisthemostintensivelystudiednoisesourceoftheonesdiscussedhere.In Figure3.3noisefromfourdifferenttypesofvesselsispresented.Theyrepresentdifferentsize‐ classes,andareshipsexpectedtobeusedinadecommissioningoperation. 4 4 Rambøll_Decommissioning_Report_31-08-12 200 Tug/Barge Supply ship Merchant ship Container ship dB re 1 µPa 1/3 oct 190 180 170 160 150 140 1 10 Figure 3.3 10 2 3 10 Frequency (Hz) 10 4 10 5 Noise from four different vessel types in 1/3 octave bands. Tug/barge and supply ship noise is modified from Richardson et al. 1995.Merchant ship noise is modified from Arveson and Vendittis 2000, and container ship is modified from McKenna et al. 2012.Recording distance back-calculated to 1 m ThevesselsconsideredinFigure3.3producenoisewithenergycontentprimarilybelow1kHz. However,itisimportanttonotethatthereisstillconsiderableenergyatfrequenciesalsoabove 1kHz.Cetaceanhearingismoreacuteathigherfrequencies,andthereforethehigh‐frequency componentsofthevesselnoiseareofparticularinterestwhendiscussingtheeffectonthesean‐ imals. Measurements have shown that the noise generated is not radiated omnidirectionally fromtheship(ArvesonandVendittis2000).Moresoundenergywillberadiatedfromthestern than the bow(McKenna etal. 2012). However, in the following omnidirectionalradiation pat‐ ternsareassumedasaconservativemeasure,astheradiationpatternisdifferentfordifferent vessels. 3.4 Background noise The assumed background noise in the Ekofisk area is presented in Figure 3.4. The noise from Wenz(1962)includesnoiseatwindconditionsof4‐6m/s(BeaufortSeaState1)andcoversan extensivefrequencyrangefromverylowfrequencies(1Hz)dominatedbyseismicbackground noise, to very high frequencies (500 kHz) dominated by noise from molecular agitation. The rangefrom10Hzto1kHzisdominatedbyshippingnoise,butastheshippingnoiselevelshave increasedsince1962,noisemeasurementsmadejustoutsideRotterdamharbour(Dreschleret al.2009)areusedasamorerealisticlevelforshippingnoise.Thevalidityoftheselevelsissup‐ portedbydatacollectedclosetotheEkofiskareabytheBritishRoyalNavy(Liddell2011). 5 Rambøll_Decommissioning_Report_31-08-12 5 130 Wenz Drescler Liddell min Liddell max 120 110 dB re 1 µPa 1/3 oct 100 90 80 70 60 50 40 0 10 10 1 10 2 3 10 Frequency (Hz) 10 4 10 5 10 6 Figure 3.4 Background noise in 1/3 octave band levels. The dark blue line is the Wenz curve for high shipping noise and a wind speed 4-6 m/s, modified from Wenz 1962.The orange line is noise measured at the port of Rotterdam, modified from Dreschler et al. 2009. The light blue line and the red line are the minimum and maximum values, respectively, of noise measurements made close to the Ekofisk area using sonobuoys, modified from (Liddell 2011) 4 Underwater hearing in harbour porpoises, white beaked dolphins, killer whales, Northern minke whales, Atlantic herring and Atlantic cod Inthissection,thestateofknowledgeabouttheunderwaterhearingcapabilitiesofthefourma‐ rine mammal species and two of the fish species occurring in the Ekofisk area is briefly re‐ viewed. 4.1 Underwater hearing and sound production in harbour porpoises, white beaked dolphins and killer whales Asmentionedabovemarinemammalsdetectthepressurecomponentofthesoundfield(Supin etal.,2001;Finneranetal.,2002). Harbourporpoiseuseecholocationtonavigateandforage(Verfussetal.,2005,Verfussetal. 2009).Theyemitintenseultrasonicclickswithafrequencycontentcentredaround130kHzand peaktoppeaksourcesoundpressurelevelsaround200dBre1µPa(Villadsgaardetal.2007). Harbourporpoisesalsoseemtouseecholocationclicksforcommunication,butatsignificantly lowersoundpressurelevels(140‐160dBre1µPa;Clausenetal.2010).Hearingisthekeymo‐ dality for harbour porpoises for most aspects of their life, and their hearing capabilities have beeninvestigatedinseveralstudies(Figure4.1;Andersen1970,Popovetal.1986,Kasteleinet al.2002).Inadditiontothehearingthresholds,harbourporpoisehearingbecomesincreasingly directionalwithhigherfrequencies.Thisdirectionalityimprovestheirecholocationcapabilities bymakingthemlesssusceptibletobackgroundnoiseandclutterechoes(i.e.returningechoes fromotherobjectsthantheintendedtarget;Kasteleinetal.2005). 6 6 Rambøll_Decommissioning_Report_31-08-12 120 110 100 dB re 1µPa 90 80 70 60 50 40 30 2 10 Figure 4.1 10 3 4 10 Frequency (Hz) 10 5 10 6 Audiograms for harbour porpoises modified from Kastelein et al. 2002, Andersen 1970 and Popov et al. 1986 White‐beaked dolphins also use echolocation to navigate and forage. They emit very broad‐ bandecholocationclicksofveryshortduration,withafrequencycentredaround120kHz.Some clicksmayhaveabimodalfrequencystructurewithasecondarypeakat250kHz(Rasmussen andMiller2004).Thepeaktopeaksourcelevelsoftheecholocationclickshavebeenfoundto beashighas219dBre1µPa(Rasmussenetal.2002).Unlikeporpoisesdolphinsuseavarietyof different sounds for communication. They use clicks, but also sound with significantly lower frequencies known as whistles and pulsed calls. Lowering the frequency content causes the soundtobeemittedmoreomnidirectionally(LammersandAu2003)whichcouldbeadvanta‐ geouswhencommunicatingisagroup.Whitebeakeddolphinwhistleshaveafundamentalfre‐ quencyaround10kHz(RasmussenandMiller2004),butcontainssignificantenergyat>50kHz (Rasmussenetal.2006).Sourcelevelsofwhistlesarehighlyvariable,dependingonanumberof factorssuchasbackgroundnoiselevel(Scheifeleetal.2004),buttherangeofthemeasurewhis‐ tlesis118‐167dBre1µParms(Rasmussenetal.2006).Thehearingofthewhitebeakeddol‐ phinhasbeeninvestigatedusingABRbyNachtigalletal.(2008)andtheaudiogramispresented inFigure4.2.Forthosedolphinswerethehearinghasbeenthoroughlyinvestigated,itisevident thatlikeporpoisesthehearingbecomesincreasinglydirectionalwithincreasingfrequency(Au andMoore1984). Rambøll_Decommissioning_Report_31-08-12 7 7 140 130 120 dB re 1µPa 110 100 90 80 70 60 50 40 4 10 Figure 4.2 5 10 Frequency (Hz) 10 6 Audiogram for white beaked dolphin (Lagenorhynchus albirostris) modified from Nachtigall et al. 2008 Killerwhalesarefoundthroughouttheworld’soceans.Theirhearingsensitivityhasbeenin‐ vestigatedbySzymanskietal.(1999;Figure4.3).Theirecholocationsignalsareverybroadband infrequencyandhaveashortdurationcomparedtoharbourporpoiseclicks,butaslightlylong‐ erdurationthanotherdolphinclicks.Theclicksofkillerwhaleshaveabimodalfrequencystruc‐ ture,buthaveacentrefrequencyaround50kHzwhichisabout anoctavelowerthanwhatis found in other delphinid species investigated. Source levels of the clicks are usually between 195and210dBre1µPabuthavebeenmeasureashighas224dBre1µPapp(Auetal.2004, Eskesenetal.2011).Killerwhalesareseparatedintoatleastthreedistinct“ecotypes”basedon dietarypreference(Hermanetal.2005).ThekillerwhalesintheNorthSeamostlikelyfeedon herringandotherfishspecies(SimiläandUgarte1993),howevertheareamayoccasionallybe visitedbymarinemammaleatingindividuals.Fisheatingkillerwhalesuseecholocationtofind theirprey(Barrett‐Lennardetal.1996),butkillerwhalesinIcelandicandNorwegianwatersal‐ so use a type of low frequency “herding” calls when feeding schools of herring (Simon et al. 2006).Thecallhasapeakfrequencyof683Hz,andasourcelevelsbetween169and192dBre1 µPa(Simonetal.2006).Marinemammaleatingkillerwhalesontheotherhandareveryquiet andlocatetheirpreybylisteningforsoundsgeneratedbytheprey(Barrett‐Lennardetal.1996; Deeckeetal.2002).Thisdiscrepancyinforagingbehaviourbetweenfish‐andmammaleating killer whales creates differences in their susceptibility to masking. Like other dolphins, killer whalescommunicateusingwhistlesandcalls.Thefrequencyrangeofwhistlesisbetween500 Hzand10kHz(Thomsenetal.2001),butthesourcelevelsofthewhistleareveryvariable.Holt etal.(2011)measuredsourcelevelsofcallsbetween135and175dBre1µPa,andfoundaposi‐ tiverelationshipbetweensourcelevelandbackgroundnoise,alsoknownastheLombardeffect. 8 Rambøll_Decommissioning_Report_31-08-12 8 120 110 100 dB re 1µPa 90 80 70 60 50 40 30 3 10 Figure 4.3 4 10 Frequency (Hz) 10 5 Audiogram of two killer whales (Orcinus orca) modified from Szymanski et al. 1999 4.2 Hearing and sound production in northern minke whales Thehearinginbaleenwhaleshasyettobeinvestigated.However,anatomicalstudiesofthein‐ nerearinthenorthernrightwhale(Eubalaenaglacialis)suggestthatthisspecieshasahearing rangeof10Hzto22kHz(Parksetal.2007).Thisstudyistheonlystudytodirectlyinferthe complete hearing range of any baleen whale. However, an anatomical study of the northern minkewhaleearsuggestesthattheyhaveahearingrangeofbestfrequenciesbetween100Hz and30kHz(Tubellietal.2012).Baleenwhalesareknowntoproducelowfrequency,high in‐ tensitycallsforcommunication(Širovićetal.2007).Communicationsoundsfromthenorthern minke whale have been described for apopulation living in thewater offthe Australiancoast (Gedamkeetal.2001)andhaveafrequencyrangeof50Hzto9.4kHzandbroadbandsource levelsbetween150to165dBre1µPa. 4.3 Hearing and sound production in Atlantic herring and Atlantic cod Contrarytomarinemammals,fisharehighlysensitivetothelocalparticlemotionofthesound field,andcannotnecessarilydetectpressure(Kalmijn,1988;SandandKarlsen,2000).Regard‐ lessofthepresenceofair‐filledstructures,theadequatestimulusforthefishauditorysystemat frequenciesbelowahundredHzistheparticlemotion(Kalmijn,1988;Karlsenetal.,2004).At higherfrequenciesapressurewaveimpingingonaswimbladdercausesanincreaseinthepar‐ ticlemotionstimulatingtheinnerearandthesoundpressurebecomesthedominantstimulus. Fishwithswimbladdersthushaveanincreasedhearingsensitivityathigherfrequencies(Sand andEnger,1973;FayandPopper,1974).TheAtlanticcodpossessesaswim‐bladder,buthasno specialcouplingbetweentheswim‐bladderandtheinnerear.IntheAtlanticherringtheswim‐ bladderextendstotheinnerear,wheretheyaredirectlyconnected(Blaxteretal.1981).Parti‐ cle motion measurements of noise sources are very rare and are not available for this report. Pressuremeasurementsarethereforeusedwhendiscussingtheimpactonfish. ThehearingofAtlanticherringhasbeeninvestigatedbyEnger(1967),andthehearingofAtlan‐ ticcodbyBuerkle(1967),ChapmanandHawkins(1973)andOffutt(1974).Theaudiogramsof Rambøll_Decommissioning_Report_31-08-12 9 9 these species are shown in Figure 4.4 and 4.5. The thresholds of the audiograms are given in unitsofsoundpressure. Bothherringandcodproducesoundforcommunication,butinverydifferentways.TheAtlantic herringproducessoundbyreleasingairbubblesfromtheanalduct(WahlbergandWesterberg 2003,Wilsonetal.2004).Thiscreatesapulsedchirpconsistingofaseriesofpulseswithcen‐ troidfrequenciesrangingfrom3to5.1kHzandasourcelevelrangingfrom55to90dBre1µPa rms(WahlbergandWesterberg2003).Atlanticcodproducessoundbycontractingmusclesas‐ sociatedwiththeswim‐bladder,thusvibratingtheswim‐bladderwalls.Aspartoftheirmating behaviourAtlanticcodproduces“grunts”.Thesegruntshavefrequencieswithintherangeof50 to120Hz(FinstadandNordeide2004).Thesourcelevelofthesecallsisnotknown.Atlanticcod has also been documented to produce a click sound associated with anti‐predator behaviour. Thesesoundshaveapeakfrequencyof5.95kHzandasourcelevelof153dBre1µPa(Heikeet al.2004). 140 130 dB re 1 µPa 120 110 100 90 80 70 1 10 Figure 4.4 10 10 2 Frequency (Hz) 10 3 10 4 Audiogram for Atlantic herring modified from Enger 1967 Rambøll_Decommissioning_Report_31-08-12 10 140 130 120 dB re 1µPa 110 100 90 80 70 60 1 10 Figure 4.5 5 2 10 Frequency (Hz) 10 3 Audiograms for Atlantic cod (Gadus morhua) modified from Buerkle 1967, Chapman and Hawkins 1973 and Offutt 1974 Estimation of potential effects of decommissioning noise and the resulting impact zones for on harbour porpoise, white beaked dolphin, killer whale, minke whale, Atlantic herring and Atlantic cod Impacts are assessed based on the predicted sound levels presented in a previous chapter, as wellaspublishedinformationonthecriteriaforbehaviouralandphysiologicalresponsetoun‐ derwaternoiseinthefourcetaceanspeciesandtwofishspecies.Noisepropagationinthewater columnisassumedtofollowgeometricalspreadingof15log(r)andfrequencydependentab‐ sorption.Thegeometricalspreadingdependsonwaterdepth,bottomsubstrateandnoisefre‐ quency,andisthereforedifferentfromplacetoplace.However,15log(r)seemstobeagood approximationinmanysituations(Shapiroetal.2009).Thecriteriaused,arebasedonrelative‐ ly few studies, and were conducted on a very limited number of individuals and species. The conclusionsshouldthereforebeviewedbearingthisinmind. 5.1 Definitions of zones of impact Ingeneral,theeffectofnoiseonmarinemammalscanbedividedintofourbroadcategoriesthat largelydependontheindividual’sproximitytothesoundsource: 1) Detection 2) Masking 3) Behaviouralchanges 4) Physicaldamages Itisimportanttorealisethatthelimitsofeachzoneofimpactarenotsharp,andthatthereisa largeoverlapbetweenthedifferentzones.Furthermore,behaviouralchanges,maskingandde‐ tectioncriticallydependonthebackgroundnoiselevelandallimpactsdependontheage,sex Rambøll_Decommissioning_Report_31-08-12 11 11 andgeneralphysiologicalandbehaviouralstatesoftheanimals(Popovetal.2011;Southallet al.2007). Detection The detection threshold of a noise source can be obtained by comparing the absolute hearing thresholdobtainedinlow‐noiselaboratoryexperimentswiththe1/3octavenoise(seechapter 2).Ifthebackgroundnoiselevelisabovethehearingthresholdofthespeciesinquestion,the detectiondistancedependsonthehearingabilitiesundernoisyconditions.Here,detectionofa sound will be possible approximately out to a distance where the received level matches the ambientnoiselevelinthe1/3octavefrequencybandinquestion.Thehearingthresholdsforthe animalsstudiedhereareshowninchapter3. Masking Thezoneofmaskingisdefinedbytherangeatwhichsoundlevelsfromthenoisesourcearere‐ ceivedabovethresholdwithinthecriticalbandcentredonthesignal(Frisketal.2003).Inother words,significantmaskingstartswhenthe1/3octavebandsoundlevelofthemaskingsound equals the ambient noise in the frequency of the signal. It should be noted, however, that for noisewithspectralpeaks,thisdefinitionisnotcompletelycorrectasthemaskingpowerofcon‐ tinuouspuretonesissignificantlylowerthanthatofbroadbandnoise(Madsenetal.2006). Harbourporpoises,whitebeakeddolphinsandkillerwhalesrelyheavilyonacousticsignalsfor allaspectsofforagingandnavigation.Harbourporpoisesuseacousticsignalsduringe.g.sexual displays and in communication between the mother and the calf, and white beaked dolphins, killerwhalesandNorthernminkewhalesuseawidevarietyofacousticsignalsduringsocialbe‐ haviour,sexualdisplaysandforcoordinatinggrouphuntingbehaviour.Maskingofanyofthese signals may have serious consequences for the overall fitness of the animal. Especially for Northernminkewhales,whitebeakeddolphinsandkillerwhalesmaskingmaybeaproblem,as their communication signals have much lower peak frequencies, and mammal eating killer whalesmaybeparticularlyvulnerabletomaskingofpreysoundsignatures. Atlantic herring and Atlantic cod may also be vulnerable to masking as their communication soundsareverylowinfrequency.Forfishhowever,theremaybeanadditionalproblem.Many fish species migrate over considerable distances and may rely on acoustic cues from the sur‐ roundingenvironment(vanOpzeelandandSlabbekoorn2012).Increasednoisecouldpotential‐ lymakeitmoredifficultforfishtofindvitalareassuchasspawninggrounds,thusnegativelyaf‐ fectlocalpopulations. Behaviour Behaviourisinherentlydifficulttoevaluate.Behaviouralchangesrangefromverystrongreac‐ tions,suchaspanicorflight,tomoremoderatereactionswheretheanimalmayorientitselfto‐ wards the sound or move slowly away. However, the animals’ reaction may vary greatly de‐ pending on season, behavioural state, age, sex, as well as the intensity, frequency and time structureofthesoundcausingbehaviouralchanges. According to Southall et al. 2007, all recorded exposures exceeding 140 dB re 1 µPa induced profoundandsustainedavoidanceinwildporpoises.Thisvaluehasrecentlybeencorroborated instudieslookingatthebehaviouralimpactsofpiledrivingandseismicsurveysinwildandcap‐ tive harbour porpoises (Brandt et al. 2011; Tougaard et al. 2009; Lucke et al. 2009;). For the studiesinvestigatingwildporpoisesdoubtshavebeenraisedastowhethertheanimalsactually vacatetheareaorwhethertheyremainintheareabutkeepsilent.AstudybyTougaardetal. (2012)showsthattheanimalsdoindeedleavethearea.The140dBcriterioncouldthereforebe usedtoestimatethezoneofavoidance. Asimilarcriterionisalsoassumedforkillerwhalesasthisissupportedbyavoidancebehaviour inkillerwhalesinresponsetoacousticharassmentdevices(MortonandSymonds2002).There seemstobesomeinterspeciesvariationregardingwhatsoundpressurelevelswillelicitbehav‐ ioural avoidance (Barry et al. 2012, Palka and Hammond 2001). However, as no studies have documented avoidance behaviour in the white beaked dolphin, the criterion for behavioural avoidanceinkillerwhalesisadoptedhere.Northernminkewhaleshavebeenshowntoavoida 12 12 Rambøll_Decommissioning_Report_31-08-12 vesselatsoundpressurelevelsof120dBre1µPa(PalkaandHammond2001).Asimilarcrite‐ rionisproposedbySouthalletal.(2007). Fish behaviour in response to noise is not well known. Sound pressure levels that may deter some species, mayattractothers. One study by Thomsenet al. (2012) does, however, demon‐ strate avoidance behaviour in the Atlantic cod, when exposed to play‐back pile‐driving noise. Levelsthatcausedavoidancebehaviourwerebetween140and161dBre1µPa.ForbothAtlan‐ ticcodandAtlanticherringacriterionof140dBre1µPawillbeusedasaworstcasescenario. Physicaldamages Physicaldamagestothehearingapparatusleadtopermanentchangesintheanimals’detection threshold (permanent threshold shift, PTS). This can be caused by the destruction of sensory cellsintheinnerear,orbymetabolicexhaustionofsensorycells,supportcellsorevenauditory nervecells.Hearinglossisusuallyonlytemporary(temporarythresholdshift,TTS)andthean‐ imalwillregainitsoriginaldetectionabilitiesafterarecoveryperiod,butduringprolongedex‐ posures,wheretheearisexposedtoTTSinducingsoundpressurelevelsbeforeithashadtime torecover,TTSmaybuild,andaTTSof50ormorewilloftenresultinpermanentdamage(Ket‐ ten2012).ForPTSandTTSthesoundintensityisanimportantfactorforthedegreeofhearing loss,asisthefrequency,theexposureduration,andthelengthoftherecoverytime(Popovetal. 2011). PTS has not been investigated in any cetaceans due to their conservational status. A study by Luckeetal.(2009)measuredTTSintheharbourporpoisewhenexposedtoasinglesoundpulse fromanairgunarray.TheTTSlimitwasatapeaktopeaksoundpressurelevelof200dBre1 µPa(TTS=6dB,recoveryofhearingafter>4h).ATTSof6dBwillhalfthedistanceoverwhich ananimalcandetectasoundssource.ArecentstudybyPopovetal.(2011)hasinvestigatedTTS foranotherPhocoenoidspecies,theYangtzefinlessporpoise(Neophocaenaphocaenoidesasiae‐ orientalis). When exposed to prolonged noise (30 min) between 32 and 128 kHz, they found TTStooccuratsoundpressurelevelsaslowas140dBre1µPaandthatthelowerthefrequen‐ cy,thestrongerwasthenoiseeffect. TTSinkillerwhalesandwhitebeakeddolphinshasnotbeenmeasured.Inthefollowinglevels are therefore based on what has been measured in bottlenose dolphins (Tursiops truncatus). Southalletal.(2007)proposesacriterionof230dBre1µPaforsinglepulsesounds.Forpro‐ longednoiseexposures(30min)Nachtigalletal.(2004)measureda5dBTTSatlevelsof160 dBre1µPa.The160dBcriterionwillbeusedasaworstcasescenario. Hearing has never been measured in a baleen whale, therefore anymeasures of either PTS or TTShavenotbeenmeasuredeither.Southalletal.2007proposesaTTScriterionof230dBfor singlepulseexposuresandinthefollowingthe160dBcriterionforbottlenosedolphinswillbe adoptedfornorthernminkewhales. PTS and TTS in fish has been investigated fish anatomically after exposure to pile‐driving sounds,andacriterionof206dBre1µPahasbeensuggestedasthesoundpressurelevelonset ofobservablephysicaldamagesintheear(Halvorsenetal.2011). Criteriaforallthezonesofimpactforthedifferentanimalsareshownintable5.1. Table 5.1 Criteria used for calculating the zones of impact for PTS/TTS, avoidance behaviour and masking in the six marine animals investigated: Harbour porpoise, white-beaked dolphin, killer whale, northern minke whale, Atlantic herring, and Atlantic cod Impactzonecriteria Harbourpor‐ White‐ Killer Northern poise beaked whale minke dolphin (dBre1µPa) 206/‐ 206/‐ Behaviour 160‐140 160‐140 range) 5.1kHz 120Hz (dBre1µPa) Masking(frequency Rambøll_Decommissioning_Report_31-08-12 Atlanticcod herring PTS/TTS Atlantic 3‐ 50‐ whale 200/140 230/160 230/160 110‐ 500Hz‐ 10‐50 140 150kHz 140 10kHz 140 kHz 230/‐ 120 50Hz‐ 9.4kHz 13 13 5.2 Impact zones for explosives The sound pressure source level for an explosion using a charge size of 0.5kg TNT is roughly 270dBre1µPa(seechapter2;Richardsonetal.1995).Asthesoundpropagationfromexplo‐ sives is very complex, the simplified calculations, assuming frequency dependent absorption andgeometricalspreadingof15log(r),cannotgiveanaccurateestimateofthezonesofimpact. However,detectionrangeswillmostlikelybebeyond50km.MarinemammalPTS/TTSdistanc‐ eshavebeenmeasuredbyDosSantosetal.2010toablastofsimilarsoundpressurelevel,and werebeyond1km.Theyalsomeasuredsoundpressurelevelshigherthanthecriteriausedhere atdistancesofmorethan2km.Injuryinfishfromblastinghasbeendocumentedtodistancesof 100mfromtheblastsitewithmostfishbeingfoundwithin50m(ContinentalShelfAssociates, Inc.2004),thisisalsoinlinewithwhatwasobservedbyDosSantosetal.2010. 5.3 Impact zones for drilling Thedrillingimpactzoneiscalculatedasarangebetweenthehighandlowdrillingnoises(see chapter2;Richardsonetal.1995).AnexampleisgiveninFigure5.1,whichshowstheharbour porpoisedetectiondistanceofthelowdrillingnoise.Allcalculatedrangesfordrillingimpactare collectedinTable5.2. dB re 1 uPa rms 200 Background Audiogram Decom noise 150 100 50 0 0 10 Detection distance (km) 10 10 10 10 10 1 10 2 10 3 10 4 10 5 10 6 2 0 -2 -4 10 1 2 10 Frequency (Hz) 10 3 Figure 5.1 Detection distance of low drill-ship noise by a harbour porpoise Table 5.2 Zones of impact to drilling noise, defining zones of PTS/TTS, avoidance behaviour and masking in the harbour porpoise, white-beaked dolphin, killer whale, northern minke whale, Atlantic herring, and Atlantic cod. The drilling noise used is from Richardson et al. 1995 Impactzone Atlantic Atlanticcod herring Harbour White‐ porpoise beakeddol‐ ‐/50‐300m ‐/3‐12m Killerwhale Northern minkewhale phin PTS/TTS Behaviour Masking Detection ‐ 5–50m/ 10–300m ‐ 4‐>10km ‐ 5–50m/ 10–300m 4‐>10km 4‐>10km 50‐300m 50‐300m 4‐>10km 4‐>10km ‐ ‐ ‐/3‐12m 50–300m 3‐>10km 3‐>10km ‐ 2–6km 4‐>10km 4‐>10km 14 14 Rambøll_Decommissioning_Report_31-08-12 5.4 Impact zones for shipping Theimpactofshippingisverydependentonthetypeofshipemployed.Theimpactzonescalcu‐ lated here are based on the noise from a large merchant ship (see chapter 2; Arvenson and Vendittis 2000). In Figure 5.2 an example is given of the white‐beaked dolphin detection dis‐ tance of shipping noise. All calculated ranges for shipping noise impact are collected in Table 5.3. dB re 1 uPa rms 200 Background Audiogram Decom noise 150 100 50 0 0 10 Detection distance (km) 10 10 10 10 10 1 10 2 10 3 10 4 10 5 10 6 2 0 -2 -4 10 1 10 2 3 10 Frequency (Hz) 10 4 10 5 Figure 5.2 Detection distance of shipping noise from a large merchant ship by a white-beaked dolphin Table 5.3 Zones of impact to shipping noise, defining zones of PTS /TTS, avoidance behaviour and masking in the harbour porpoise, white-beaked dolphin, killer whale, northern minke whale, Atlantic herring, and Atlantic cod. The shipping noise used in from Arvenson and Vendittis 2000 Impactzone Atlanticher‐ Atlanticcod Harbour White‐ porpoise beakeddol‐ ‐ ‐/1km ‐/35m >10km >10km ring Killerwhale Northern minkewhale phin PTS/TTS Behaviour 6 Masking Detection ‐ 50m–1km 2km 4.5‐>10km 50m–1km >10km 1km ‐ 1km >10km >10km ‐/35m 1km >10km >10km ‐ >10km >10km >10km Occurrence of harbour porpoise, white beaked dolphin, killer whale, northern minke whale, Atlantic herring and Atlantic cod in the central North Sea Harbour porpoises, white‐beaked dolphins, killer whales and Northern minke whales are all protected species under the European Commission’sHabitat Directive’s Appendix IV. Harbour porpoises, white‐beaked dolphins and killer whales are also of concern in the ASCOBANS agreementundertheBonnConvention,withtheharbourporpoiseasthe“flagship”species. TheharbourporpoiseisaverycommoncetaceaninthecentralNorthSea,andhasbeenthe subjectofintenseinvestigation.Large‐scalevisualandacousticsurveysofthespecieswerecon‐ Rambøll_Decommissioning_Report_31-08-12 15 15 ductedallthroughEuropeanwatersinthesummersof1994and2005(Figure6.1;Hammondet al.2002,2006;Teilmannetal.2008).TheestimatedpopulationsizeinthecentralNorthSeais approx.59,000individuals(Hammondetal.2006).Datacollectedfromsatellite‐taggedindivid‐ ualsintheNorthSeaindicatetheareaaroundandnorthofSkagenouttoadepthofaround200 metersaswellastheinnershelfoftheDanishpartofSkagerrakwithwaterdepthsof10to50 metersasimportanthabitatsforharbourporpoisesareasacrossseasons(Figure6.2;Teilmann etal.2008). Figure 6.1 16 Sightings of harbour porpoise during the shipboard and aerial surveys of the SCANS-II survey. From Hammond et al. 2006 16 Rambøll_Decommissioning_Report_31-08-12 Figure 6.2 Average all year distribution based on 26 harbour porpoises tagged in Skagen. From Teilmann et al. 2008 For white‐beaked dolphins and Northern minke whales the same detailed studies are not available. However, population sizes of white‐beaked dolphins and Northern minke whales in theentireNorthSeawereestimatedbyHammondetal.(2006)withapprox.10,500and8,400 individualsrespectively. Killer whale abundance estimates are not available for the central North Sea, but Figure 6.3 showssightingsofkillerwhalesintheareabetween1970and2006(Footeetal.2007).Killer whales are mostly found in the central North Sea between September and December, where theyarethoughttofollowthemigrationoftheNorthSeamackerel(Luqueetal.2006). 17 Rambøll_Decommissioning_Report_31-08-12 17 Figure 6.3 Distribution of killer whales based on sightings made between1970-2006. From Foote et al. 2007) AtlanticherringandAtlanticcodpopulationestimatesinthecentralNorthSeaarenotavaila‐ ble,butspawninggroundshavebeenidentifiedforbothspeciesandareshowninFigure6.4and 6.5. Figure 6.4 18 Spawning grounds of autumn- and spring-spawning herring in the North Sea and djacent waters. Orange denotes autumn spawning herring and yellow denotes spring spawning herring. Circles denote locations of spring-spawning herring in fjords. From Dickey-Collas et al. 2010 Rambøll_Decommissioning_Report_31-08-12 18 Figure 6.5 7 The distribution of stage I cod eggs from a 2004 ichthyo-plankton survey, indicating cod spawning areas in the North Sea. The area of the solid circles is proportional to the daily production of cod eggs. Crosses indicate where a plankton sample was collected but no stage I cod eggs were found. From Fox et al. 2008 Overall Conclusion Therearefourmainsourcesofnoisegeneratedduringoil‐rigdecommissioning,threeofwhich have been described above. These are 1) explosives, 2) drilling, and 3) shipping. The fourth noisesourceiscutting,forwhichnonoiserecordingsareavailable. In the Ekofisk oil field, where decommissioning will occur, four species of cetaceans are com‐ monlyfound:theharbourporpoise,thewhite‐beakeddolphin,thekillerwhaleandthenorthern minkewhale.Furthermore,twospeciesoffishcommoninthisareawerechosenasmodelfish species,duetotheirhighcommercialvalue,theAtlanticherringandtheAtlanticcod. 19 Rambøll_Decommissioning_Report_31-08-12 19 Explosivesareexpectedtohavefarreachingeffectsonallspeciesinvestigated,causingphysical injuries within a distance of at least 500 meters. For cetaceans, behavioural disturbances are expectedtooccurseveralkilometresawayfromtheblastingsite.Fortheothernoisesources,ef‐ fects are not expected to be as dramatic. TTS of marine mammals are most likely to occur at closeranges(<300m)andafterprolongedexposures(>30minutes).Fordrillingusingajack‐up drillingrig,behaviouralchangesareexpectedtooccuratdistancesatlessthan300mformost ofthemarinemammalspecies.Thenorthernminkewhalemay,however,showsadversebehav‐ iouratgreaterdistances(~6km).Duetothehighspectralnoiselevelsofthelowerfrequencies forthenoisesourcesdescribedhere,maskingofcommunicationsignalsisquitepossibleforall species,excepttheharbourporpoise,withmaskingeffectsatdistancesofmorethan10kmfrom thesource.Thebigunknowninthisriskassessmentiscutting,andthereforefurtherinvestiga‐ tionsshouldincludetheacquisitionofnoisedetailsfromcuttingactivities. Decommissioningofasingleoil‐rigcouldpotentiallyaffectalargenumberofanimalsinthecen‐ tralNorthSea,dependingonthedecommissioningmethodutilized.Theuseofexplosivescould potentiallycausephysicalinjuryinhundredsofmarinemammalsandbehaviouraldisturbances inseveralthousand,andthenumberoffishaffectedneartheblastsitecouldpotentiallybemil‐ lions.Itwillmostlikelyalsoaffectnearbyspawningsitesforcodthroughbehaviouralchanges andmasking,ascodusesoundduringspawning.Shippinganddrillingwillnothaveasfarreach‐ ing effects, but the number of marine mammals affected behaviourally may still be relatively high.Shippingmayalsohaveanegativemaskingeffectatcodspawningsites. Mitigationeffortsshouldfocusontheimmediatevicinityofthesites,employingmethodsusing marineobserversandacousticmonitoringofthemarinemammalssounds.Thiscanbedoneus‐ ing click detectors (PODs) which automatically register high frequency orientation sounds (=clicks).Furthermoreonecanuseacousticdeterrentorharassmentdevices.Theseareinstru‐ mentsthatplaybacksoundsthatareaversivetomarinemammals.Theycanbeusedtokeepce‐ taceansoutoftheareaofinjury. Dependingonthenumberofrigstobedecommissionedsimultaneously,thecumulativeeffect maycausesignificantlylargerareastobeaffected,anditcouldresultinprolongeddisplacement effectsaswell.Theevaluationofthecumulativeeffectswillmostlikelybepartofanyenviron‐ mentalimpactassessmentstobeprepared,oncethenumber,locationandtimingofdecommis‐ sionedrigsaredetermined. 20 20 Rambøll_Decommissioning_Report_31-08-12 8 References Andersen,S.1970.Auditorysensitivityoftheharbourporpoise,Phocoenaphocoena.Investiga‐ tionsofCetacea2:255‐259. Arveson,P.T.,Vendittis,D.J.2000.Radiatednoisecharacteristicsofamoderncargoship.J.A‐ coust.Soc.Am.107(1):1063‐7834. Au,W.W.L.,Moore,P.W.B.1984.ReceivingbeampatternsanddirectivityindicesoftheAtlan‐ ticbottlenosedolphin(Tursiopstruncates).J.Acoust.Soc.Am.75(1):255‐262. Au,W.W.L.,Ford,J.K.B.,Horne,J.K.,Allman,K.A.N.2004.Echolocationsignalsoffree‐ranging killer whales (Orcinus orca) and modeling of foraging for chinook salmon (Oncorhynchus tshawytscha).J.Acoust.Soc.Am.115(2):901‐909. Barrett‐Lennard,L.G.,Ford,J.K.B.,Heise,K.A.1996.Themixedblessingofecholocation:differ‐ encesinsonarusebyfish‐eatingandmammal‐eatingkillerwhales.Anim.Behav.51:553‐565. Baagøe,H.J.,Jensen,TS(ed).(2007).DanskPattedyrsAtlas(Gyldendal,NaturhistoriskMuseum, Aarhus,ZoologiskMuseum,StatensNaturhistoriskeMuseum,København). Barry,S.B.,cucknell,A.C.,Clark,N.2012.AdirectComparisonofBottlenoseDolphinandCom‐ monDolphinBehaviorDuringSeismicSurveysWhenAirGunsAreandAreNotBeingUtilized. A.N. Popper and A. Hawkins (eds.), The Effects of Noise on Aquatic Life, Advances in Experi‐ mentalMedicineandBiology730.SpringerScience+BusinessMedia,LLC2012. Bejder,L.,Samuels,A.,Whitehead,H.,Gales,N.2006.Declineintherelativeabundanceofbottle‐ nosetolphinsexposedtolong‐termdisturbance.ConservationBiology20:1791‐1798. Blaxter,J.,Denton,E.J.,Gray,J.A.B.1981.Acousticolateralissysteminclupeidfishes.In:Tavol‐ ga,WN,Ray,RR(Eds.).Hearingandsoundcommunicationinfishes.Springer‐Verlag,NewYork, pp39‐56. BrandtMJ,DiederichsA,BetkeK,NehlsG(2011)Responsesofharbourporpoisestopiledriving attheHornsRevIIoffshorewindfarmintheDanishNorthSea.MarEcolProgSer421:205–216. Buerkle,U.1967.AnaudiogramoftheAtlanticcod,GadumorhuaL.J.Fish.Res.Bd.Cananda, 24,2309‐2319. Carstensen,J.,Henriksen,O.D.,Teilmann,J.2006.Impactsofoffshorewindfarmconstructionon harbour porpoises: acoustic monitoring of echolocation activity using porpoise detectors (T‐ PODs).MarEcolProgSer.321:295‐308. Chapman, C.J. and Hawkins, A.D. 1973. A field study of hearing in the Cod, Gadus morhua L. Journalofcomparativephysiology,85:147‐167. Clausen,K.T.,Wahlberg,M.,Beedholm,K.Deruiter,S.,Madsen,P.T.2010.Clickcommunication inharbourporpoisesPhocoenaphocoena.Bioacoustics20:1‐28. ContinentalShelfAssociates,Inc.2004.Explosiveremovalofoffshorestructures‐information synthesisreport.U.S.DepartmentoftheInterior,MineralsManagementService,GulfofMexico OCSRegion,NewOrleans,LA.OCSStudyMMS2003‐070.181pp.+app. Deecke, V. B., Slater, P. J. B., Ford, J. K. B. 2002. Selective habituationshapesacoustic predator recognitioninharbourseals.Nature420:171‐173. 21 Rambøll_Decommissioning_Report_31-08-12 21 Dickey‐Collas,M.,Nash,R.D.M.,Brunel,T.,vanDamme,C.J.G.,Marshall,C.T.,Payne,M.R.,Cor‐ ten,A.,Geffen,A.J.,Peck,M.A.,Hatfield,E.M.C.,Hintzen,N.T.,Enberg,K.,Kell,L.T.,Simmonds, E.J.2010.LessonslearnedfromstockcollapseandrecoveryofNorthSeaherring:areview.ICES JournalofMarineScience.67:1875–1886. Diederichs,A.,Brandt,M.,Nehls,G.2010.DoessandextractionnearSyltaffectharbourporpois‐ es?WaddenSeaEcosystem26:199‐203 Dreschler, J., Ainslie M.A., and Groen, W.H.M. 2009. Measurements of underwater background noiseMaasvlakte2.TNO‐DV2009C212,May2009. dosSantos,M.E.,Couchino,M.N.,Luís,A.R.,andGonçalves,E.J.2010.Monitoringunderwater explosionsinthehabitatofresidentbottlenosedolphins.J.Acoust.Soc.Am.128(6):3805‐3808. Elsayed,N.M.1997.Toxicologyofblastoverpressure.Toxicology121:1‐15. Enger,P.1967.Hearinginherring.Comp.Biochem.Physiol.,22:527‐538. Eskesen, I. G., Wahlberg, M., Simon, M., Larsen, O. N. 2011. Comparison of echolocation clicks fromgeographicallysympatrickillerwhalesandlong‐finnedpilotwhales(L).J.Acoust.Soc.Am. 130(1):9‐12. Fay,R.R.,andPopper,A.N.1974.Acousticstimulationofearofgoldfish(Carrassiusauratus). JournalofExperimentalBiology61:243‐260. Finneran,J.J.,Carder,D.A.,andRidgway,S.H.(2002)."Low‐frequencyacousticpressure,veloci‐ ty,andintensitythresholdsinabottlenosedolphin(Tursiopstruncatus)andwhitewhale(Del‐ phinapterusleucas),"JournaloftheAcousticalSocietyofAmerica111,447‐456. Finstad,J.L.,Nordeide,J.T.2004.Acousticrepertoireofspawningcod,Gadusmorhua.Environ‐ mentalBiologyofFishes.70:427‐433. Foote,A.D.,Víkingsson,G.,Øien,N.,Bloch,D.,Davis,C.G.,Dunn,T.E.,Harvey,P.,Mandleberg,L., Whooley, P., Thompson, P.M. 2007.Distribution and abundance of killer whales in the North EastAtlantic.DocumentSC/59/SM5submittedtotheScientificCommitteeoftheInternational WhalingCommission.59thAnnualMeeting,28‐31May,2007,Anchorage,Alaska,USA. Fox,C.J.,Taylor,M.,Dickey‐Collas,M.,Fossum,P.,Kraus,G.,Rohlf,N.,Munk,P.,vanDamme,C.J. G.,Bolle,L.J.,Maxwell,D.L.,Wright,P.J.2008.MappingthespawninggroundsofNorthSeacod (Gadusmorhua)bydirectandindirectmeans.Proc.R.Soc.B.275:1543‐1548. Frisk,G.,Bradley,D.,Caldwell,J.,D’Spain,G.,Gordon,J.,Hastings,M.,Ketten,D.,Miller,J.,Nelson, D.L.,Popper,A.N.andWartzok,D.(2003).Oceannoiseandmarinemammals.NationalResearch CounciloftheNationalAcademics;NationalAcademicPress,Washington,192p. Gedamke, J., Costa, D. P., Dunstan, A. 2001. Localization and visual verification of a complex minkewhalevocalization.J.Acoust.Soc.Am.109(6):3038‐3047. Halvorsen,M.B.Casper,B.M.,Woodley,C.M.Carlson,T.J.,Popper,A.N.2011.Predicingandmi‐ tigating hydroacoustic impacts on fish from pile installations. NCHRP Research Results Digest 363,Project25.28,NationalCooperativeHighwayResearchProgram,TransportationResearch Board,NationalAcademyofSciences,Washington,D.C. Hammond,P.S.,Berggren,P.,Benke,H.,Borchers,D.L.,Collet,A.,Heide‐Jørgensen,M.P.,Heimlich, S.,Hiby,A.R.,Leopold,M.F.andØien,N.2002.Abundanceofharbourporpoisesandotherceta‐ ceansintheNorthSeaandadjacentwaters.J.App.Ecol.39:361‐376. 22 22 Rambøll_Decommissioning_Report_31-08-12 Hammond, P. et al. 2006. Small Cetaceans in the European Atlantic and North Sea (SCANS‐II). LIFE04NAT/GB/000245.FINALREPORT. Heike,I.V.,Folkow,L.P.Blix,A.S.2004.Clicksoundsproducedbycod,Gadusmorhua.J.Acoust. Soc.Am.115(2):914‐919. Herman, D. P., Burrows, D. G., Wade, P. R., Durban, J. W., Matkin, C. O., LeDuc, R. G., Barrett‐ Lennard,L.G.,Krahn,M.M.2005.FeedingecologyofeasternNorthPacifickillerwhales(Orci‐ nusorca)fromfattyacid,stableisotope,andorganochlorineanalysesofblubberbiopsies.Mar. Ecol.Prog.Ser.302:275‐291. Holt,M.M.,Noren,D.P.,Emmons,C.K.2011.Effectsofnoiselevelsandcalltypesonthesource levelsofkillerwhalecalls.J.Acoust.Soc.Am.130(5):3100‐3106. Kalmijn,A.J.1988.Hydodynamicandacousticfielddetection,inSensorybiologyofaquaticani‐ mals,editedbyJ.Atema,R.Fay,A.Popper,andW.Tavolga(Springer‐Verlag,NewYork):83‐131. Karlsen,H.E.,Piddington,R.W.,Enger,P.S.,andSand,A.2004.Infrasoundinitiatesdirectional fast‐start escape responses in juvenile roach Rutilus rutilus. Journal of Experimental Biology. 207:4185‐4193. Kastelein,R.A.,Bunskoek,P.,Hagedoorn,M.,Au,W.W.L.,Haan,D.de2002.Audiogramofahar‐ bourporpoise(Phocoenaphocoena)measuredwithnarrow‐bandfrequency‐modulatedsignals. JournaloftheAcousticalSocietyofAmerica112(1):334‐344. Kastelein,R.A.,Janssen,M.,Verboom,W.C.,Haan,D.de2005.Receivingbeampatternsinthe horizontalplaneofaharbourporpoise(Phocoenaphocoena).JournaloftheAcousticalSociety ofAmerica118(2):1172‐1179. Ketten, D. R. 2012. Marine Mammal Auditory system Noise Impacts: Evidence and Incidence. A.N. Popper and A. Hawkins (eds.), The Effects of Noise on Aquatic Life, Advances in Experi‐ mentalMedicineandBiology730.SpringerScience+BusinessMedia,LLC2012. Lammers, M. O., Au, W. W. L. 2003. Directionality in the whitles of Hawaiian spinner dolphins (Stenellalongirostris):asinglanfeaturetocuedirectionofmovement.MarineMammalScience 2:249‐264. Laursen, K. (Red.) 2001. Overvågningaf fugle, sæler og planter 1999‐2000, med resultater fra feltstationerne.DanmarksMiljøundersøgelser.103p.DMUscientificreport,nr.350. Liddell,K.(2011).ReportintotheutilityofRoyalNavysonobuoydataforinvestigatingtrendsin AmbientNoise.TheUKHydrographicOffice. Lucke, K., Siebert, U., Lepper, P. A., Blanchet, M. A. 2009. Temporary shift in masked hearing thresholdsinaharborporpoise(Phocoenaphocoena)afterexposuretoseismicairgunstimuli. JournaloftheAcousticalSocietyofAmerica125(6):4060‐4070. Luque,P.L.,Davis,C.G.,Reid,D.G.,Wang,J.andPierce,G.J.2006.Opportunisticsightingsofkiller whalesfromScottishpelagictrawlersfishingformackerelandherringoffNorthScotland(UK) between2000and2006.Aquat.Living.Resour.19:403‐410. Madsen, P. T., Wahlberg, M., Tougaard, J., Lucke, K., Tyack, P. 2006. Wind turbine underwater noiseandmarinemammals:implicationsofcurrentknowledgeanddataneeds.Mar.Ecol.Prog. Ser.309:279‐295. McKenna,M.F.,D.Ross,S.M.Wiggins,J.A.Hildebrand2012.Underwaterradiatednoisefrom moderncommercialships.JournaloftheAcousticalSocietyofAmerica131(1):92‐103. 23 Rambøll_Decommissioning_Report_31-08-12 23 Morton,A.B.,Symonds,H.K.2002.DisplacementofOrcinusorca(L.)byhighamplitudesound inBritishColumbia,Canada.ICESJournalofMarineScience.59:71‐80. Nabe‐Nielsen,J.,Tougard,J.,Teilmann,J.,Sveegaard,S.2011.Effectsofwindfarmsonharbour porpoisebehaviorandpopulationdynamics.ReportcommissionedbytheEnvironmentalGroup under the Danish Environmental Monitoring Programme. Danish Centre for Environment and Energy,AarhusUniversity.48pp.–ScientificReportfromDanishCentreforEnvironmentand Energyno.1. Nachtigall,P.E.,Supin,A.Y.,Pawloski,J.,Au,W.W.L.2004.Temporarythresholdsshiftsafter noiseexposureinthebottlenosedolphin(Tursiopstruncates)measuredusingevokedauditory potentials.Mar.Mam.Sci.20(4):673‐687. Nachtigall,P.E.,Mooney,T.A.,Taylor,K.A.,Miller,L.A.,Rasmussen,M.H.,Akamatsu,T.,Teil‐ mann,J.,Linnenschmidt,M.,Vikingsson,G.A.2008.Shipboardmeasurementsofthehearingof thewhite‐beakeddolphin(Lagenorhynchusalbirostris).J.Exp.Biol.211:642‐647. NationalResearchCounciloftheU.S.NationalAcademies(NRC).2003.OceanNoiseand MarineMammals(NationalAcademyPress,Washington,DistrictofColumbia),192pp. Offutt,G.C.1974.StructuresforthedetectionofacousticstimuliintheAtlanticcodfish,Gadus morhua.JASA,56(2),665‐671. vanOpzeeland,I.,SlabbeKoorn,H.2012.ImportanceofUnderwaterSoundforMigrationofFish andAquaticMammals.A.N.PopperandA.Hawkins(eds.),TheEffectsofNoiseonAquaticLife, Advances in Experimental Medicine and Biology 730. Springer Science+Business Media, LLC 2012. Palka, D. L., Hammond, P. S. 2001 Accounting for responsive movement in line transect esti‐ matesofabundamce.Can.J.Fish.Aquat.Sci.58:777‐787. Parks,S.E.,Ketten,D.R.,O’Malley,J.T.,Arruda,J.2007.AnatomicalPredictionsofHearinginthe NorthAtlanticRightWhale.TheAnatomicalRecord.290:734‐744. Popov,V.V.,Ladygina,T.F.,andSupin,A.Ya.1986.Evokedpotentialsoftheauditorycortexof theporpoise,Phocoenaphocoena.JCompPhysiolA.158:705‐711. Popov,V.V.,A.Ya.Supin,D.Wang,K.Wang,L.Dong,S.Wang2011.Noise‐inducedtemporary thresholdshiftandrecoveryinYangtzefinlessporpoisesNeophocaenaphocaenoides.Journalof theAcousticalSocietyofAmerica130(1):574‐584. Rasmussen,M.H.,Miller,L.A.,Au,W.W.L.2002.Sourcelevelsofclicksfromfree‐rangingwhite‐ beakeddolphins(LagenorhynchusalbirostrisGray1846)recordedinIcelandicwaters.J.Acoust. Soc.Am.111(2):1122‐1125. Rasmussen, M. H., and Miller, L. A. 2004. “Echolocation and social signals from white‐beaked dolphins,Lagenorhynchusalbirostris,recordedinIcelandicwater,”inEcholocationinBatsand Dolphins,editedbyJ.Thomas,C.Moss,andM.VaterUniv.ofChicago,Chicago,pp.50–53. Rasmussen,M.H.,Lammers,M.O.,Beedholm,K.,Miller,L.A.2006.Sourcelevelsandharmonic content of whistles in white‐beaked dolphins (Lagenorhynchus albirostris). J. Acoust. Soc. Am. 120(1):510‐517. Richardson,W.J.,Greene,C.R.Jr.,Malme,C.I.,Thomson,D.H.1995.Marinemammalsandnoise. AcademicPress,NewYork. Sand,O.,Enger,P.S.1973.Evidenceforanauditoryfunctionofswimbladderincod.J.Expl.Biol. 59:405‐414. 24 24 Rambøll_Decommissioning_Report_31-08-12 Sand,O.,Karlsen,H.E.2000.Detectionofinfrasoundandlinearaccelerationinfishes.Philosoph‐ icalTransactionsoftheRoyalSocietyofLondonSeriesB‐BiologicalSciences.355:1295‐1298. Scheifele, P. M., Andrew, S., Cooper, A., Darre, M., Musiek, F. E., Max, L. 2004. Indication of a LombardvocalresponseintheSt.LawrenceRiverbeluga.JAcoustiSocAm117(3):1486‐1492. Shapiro, A. D., Tougaard, J., Jørgensen, P. B., Kyhn, L. A., Balle, J. D., Bernardez, C., Fjälling, A., Karlsen,J.Wahlberg,M.2009.Transmissionlosspatternsfromacousticharassmentanddeter‐ rentdevicesdonotalwaysfollowgeometricalspreadingpredictions.Mar.Mam.Sci.25(1):53‐ 67. Simon,M.,Ugarte,F.,Wahlberg,M.,Miller,L.A.2006.Icelandickillerwhales(Orcinusorca)usea pulsedcallsuitableformanipulatingtheschoolingbehaviourofherring(Clupeaharengus).Bio‐ acoustics:TheInternationalJournalofAnimalSoundanditsRecording.16(1):57‐74. Similä,T.,F.Ugarte1993.Surfaceandunderwaterobservationsofcooperativelyfeedingkiller whalesinnorthernNorway.CanJZool71:1494‐1499. Širović,A.,Hildebrand,J.A.,Wiggins,S.M.2007.Blueandfinwhalecallsourcelevelsandpropa‐ gationrangeintheSouthernOcean.J.Acoust.Soc.Am.122(2):1208‐1215. Southall,B.,Bowles,A.E.,Ellison,W.T.,Finneran,J.J.,Gentry,R.L.,Greene,C.R.Jr.,Kastak,D., Ketten, D. R., Miller, J. H., Richardson, W. J., Thomas, J. A., Tyack, P. L. 2007. Marine mammal noiseexposurecriteria:initialscientificrecommendations.Aquaticmammals33(4). Supin, A. Y., Popov, V. V., and Mass, A. M. (2001). The Sensory Physiology of Aquatic Mammals (KluwerAcademicPublishers,Boston/Dordrecht/London),pp1‐324. Szymanski,M.D.,Bain,D.E.,Kiehl,K.,Pennington,S.,Wong,S.,Henry,K.R.1999.Killerwhale (Orcinus orca) hearing: Auditory brainstem response and behavioural audiograms. J. Acoust. Soc.Am.106(2):1134‐1141. Teilmann, J., Sveegaard, S., Dietz, R., Petersen, I. K., Berggren, P. 2008. High density areas for harbourporpoisesinDanishwaters.NERITechnicalReportNo.657. Thomsen,F.,Franck,D.Ford,J.K.B.2001.Characteristicsofwhistlesfromtheacousticreper‐ toireofresidentkillerwhales(Orcinusorca)offVancouverIsland,BritishColumbia.J.Acoust. Soc.Am.109(3):1240‐1246. Thomsen,F.,Mueller‐Blenkle,C.Gill,A.,Metcalfe,J.,McGregor,P.K.,Bendall,V.,Andersson,M.H., Sigray,P.,Wood,D.2012.EffectsofPile‐drivingontheBehaviorofCodanSole.A.N.Popperand A.Hawkins(eds.),TheEffectsofNoiseonAquaticLife,AdvancesinExperimentalMedicineand Biology730.SpringerScience+BusinessMedia,LLC2012. Tougaard, J., Carstensen, J., Teilmann, J., Skov, H., Rasmussen, P. 2009. Pile driving zone of re‐ sponsivenessextendsbeyond20kmforharborporpoises(Phocoenaphocoena).Journalofthe AcousticalSocietyofAmerica126(1):11‐14. Tougaard,J.,Kyhn,L.A.,Amundin,M.,Wennerberg,D.,Bordin,C.2012.Behaviouralreactionsof HarborPorpoisetoPile‐DrivingNoise. Tubelli,A.,Zosuls,A.,Ketten,D.R.,Mountain,D.C.2012.PredictionofaMysticeteAudiogramvia Finite Element Analysis of the Middle Ear. A.N. Popper and A. Hawkins (eds.), The Effects of Noise on Aquatic Life, Advances in Experimental Medicine and Biology 730. Springer Sci‐ ence+BusinessMedia,LLC2012. 25 Rambøll_Decommissioning_Report_31-08-12 25 Verfuss, U. K., Honnef, C. G., Meding, A., Dähne, M., Mundry, R., Benke, H. (2007). Geographical andseasonalvariationofhabrourporpoise(Phocoenaphocoena)presenceintheGermanBaltic searevealedbypassiveacousticmonitoring.JournaloftheMarineBiologicalAssociationU.K. 87:165‐176. Verfuss, U. K., Miller, L. A., Pilz, P. K. D., Schnitzler, H.U. (2009). Echolocation by two foraging harborporpoises(Phocoenaphocoena).JournalofExperimentalBiology212(6):823‐834. Villadsgaard,A.,Wahlberg,M.,Tougaard.J.2007.Echolocationsignalsofwildharbourporpois‐ es,Phocoenaphocoena.JournalofExperimentalBiology210:56‐64. Wahlberg,M.,Westerberg,H.2003.Soundsproducedbyherring(Clupeaharengus)bubblere‐ lease.AquaticLivingResources.16:271‐275. Wenz, G. M. 1962. Acoustic Ambient Noise in the Ocean: Spectra and Sources. Journal of the AcousticalSocietyofAmerica.34(12):1932‐1956. Wilson,B.,Batty,R.S.,Dill,L.M.2004.PacificandAtlanticherringproduceburstpulsesounds. Proc.R.soc.Lond.271:95‐97. 26 26 Rambøll_Decommissioning_Report_31-08-12
© Copyright 2026 Paperzz