Non-Deterministic
Finite Automata
1
Nondeterministic Finite Automaton (NFA)
Alphabet = {a}
a
q0
q1
a
q2
a
q3
2
Alphabet = {a}
Two choices
a
q0
q1
a
q2
a
q3
3
Alphabet = {a}
Two choices
a
q0
q1
a
q2 No transition
a
q3 No transition
4
First Choice
a a
a
q0
q1
a
q2
a
q3
5
First Choice
a a
a
q0
q1
a
q2
a
q3
6
First Choice
a a
a
q0
q1
a
q2
a
q3
7
First Choice
a a
All input is consumed
a
q0
q1
a
q2
“accept”
a
q3
8
Second Choice
a a
a
q0
q1
a
q2
a
q3
9
Second Choice
a a
a
q0
q1
a
q2
a
q3
10
Second Choice
a a
a
q0
q1
a
q3
a
q2
No transition:
the automaton hangs
11
Second Choice
a a
Input cannot be consumed
a
q0
q1
a
q2
a
q3
“reject”
12
An NFA accepts a string:
when there is a computation of the NFA
that accepts the string
There is a computation:
all the input is consumed and the automaton
is in an accepting state
13
Example
aa
is accepted by the NFA:
“accept”
a
q0
q1
a
q2
a
q0
a
q3
because this
computation
accepts aa
q1
a
q3
a
q2
“reject”
14
Rejection example
a
a
q0
q1
a
q2
a
q3
15
First Choice
a
a
q0
q1
a
q2
a
q3
16
First Choice
a
“reject”
a
q0
q1
a
q2
a
q3
17
Second Choice
a
a
q0
q1
a
q2
a
q3
18
Second Choice
a
a
q0
q1
a
q2
a
q3
19
Second Choice
a
a
q0
q1
a
q2
a
q3 “reject”
20
An NFA rejects a string:
when there is no computation of the NFA
that accepts the string.
For each computation:
• All the input is consumed and the
automaton is in a non final state
OR
• The input cannot be consumed
21
Example
a
is rejected by the NFA:
“reject”
a
q0
q1
a
q2
a
q0
a
q3
“reject”
q1
a
q2
a
q3
All possible computations lead to rejection
22
Rejection example
a a a
a
q0
q1
a
q2
a
q3
23
First Choice
a a a
a
q0
q1
a
q2
a
q3
24
First Choice
a a a
a
q0
q1
a
q3
a
q2
No transition:
the automaton hangs
25
First Choice
a a a
Input cannot be consumed
a
q0
q1
a
q2
“reject”
a
q3
26
Second Choice
a a a
a
q0
q1
a
q2
a
q3
27
Second Choice
a a a
a
q0
q1
a
q2
a
q3
28
Second Choice
a a a
a
q0
q1
a
q3
a
q2
No transition:
the automaton hangs
29
Second Choice
a a a
Input cannot be consumed
a
q0
q1
a
q2
a
q3
“reject”
30
aaa
is rejected by the NFA:
“reject”
a
q0
q1
a
q2
a
q0
a
q3
q1
a
q3
a
q2
“reject”
All possible computations lead to rejection
31
Language accepted:
a
q0
q1
a
L {aa}
q2
a
q3
32
Lambda Transitions
q0
a
q1
q2
a
q3
33
a a
q0
a
q1
q2
a
q3
34
a a
q0
a
q1
q2
a
q3
35
(read head does not move)
a a
q0
a
q1
q2
a
q3
36
a a
q0
a
q1
q2
a
q3
37
all input is consumed
a a
“accept”
q0
String
a
q1
q2
a
q3
aa is accepted
38
Rejection Example
a a a
q0
a
q1
q2
a
q3
39
a a a
q0
a
q1
q2
a
q3
40
(read head doesn’t move)
a a a
q0
a
q1
q2
a
q3
41
a a a
q0
a
q1
q2
a
q3
No transition:
the automaton hangs
42
Input cannot be consumed
a a a
“reject”
q0
String
a
aaa
q1
q2
a
q3
is rejected
43
Language accepted:
q0
a
q1
L {aa}
q2
a
q3
44
Another NFA Example
q0
a
b
q1
q2
q3
45
a b
q0
a
b
q1
q2
q3
46
a b
q0
a
b
q1
q2
q3
47
a b
q0
a
b
q1
q2
q3
48
a b
“accept”
q0
a
b
q1
q2
q3
49
Another String
a b a b
q0
a
b
q1
q2
q3
50
a b a b
q0
a
b
q1
q2
q3
51
a b a b
q0
a
b
q1
q2
q3
52
a b a b
q0
a
b
q1
q2
q3
53
a b a b
q0
a
b
q1
q2
q3
54
a b a b
q0
a
b
q1
q2
q3
55
a b a b
q0
a
b
q1
q2
q3
56
a b a b
“accept”
q0
a
b
q1
q2
q3
57
Language accepted
L ab, abab, ababab, ...
ab
q0
a
b
q1
q2
q3
58
Another NFA Example
0
q0
1
q1
0, 1 q2
59
Language accepted
L(M ) = {λ, 10, 1010, 101010, ...}
= {10} *
0
q0
1
q1
0, 1 q2
(redundant
state)
60
Remarks:
•The symbol never appears on the
input tape
•Simple automata:
M1
q0
M2
L(M1 ) = {}
L(M 2 ) = {λ}
q0
61
•NFAs are interesting because we can
express languages easier than FAs
NFA
q0
a
M1
FA
q2
q1
a
q0
L( M1 ) = {a}
a
M2
a
q1
L( M 2 ) = {a}
62
Formal Definition of NFAs
M Q, , , q0 , F
Q:
Set of states, i.e.
q0 , q1, q2
:
Input aplhabet, i.e.
a, b
:
Transition function
q0 : Initial state
F:
Accepting states
63
Transition Function
q0 , 1 q1
0
q0
1
q1
0, 1 q
2
64
(q1,0) {q0 , q2 }
0
q0
1
q1
0, 1 q
2
65
(q0 , ) {q0 , q2}
0
q0
1
q1
0, 1 q
2
66
(q2 ,1)
0
q0
1
q1
0, 1 q
2
67
Extended Transition Function *
* q0 , a q1
q5
q4
a
q0
a
a
b
q1
q2
q3
68
* q0 , aa q4 , q5
q5
q4
a
q0
a
a
b
q1
q2
q3
69
* q0 , ab q2 , q3 , q0
q5
q4
a
q0
a
a
b
q1
q2
q3
70
Formally
q j * qi , w : there is a walk from qi to q j
with label
w
w
qi
qj
w 1 2 k
qi
1
2
k
qj
71
The Language of an NFA M
F q0 ,q5
q5
q4
a
q0
a
a
b
q1
q2
q3
* q0 , aa q4 , q5
aa L(M )
F
72
F q0 ,q5
q5
q4
a
q0
a
a
b
q1
q2
q3
* q0 , ab q2 , q3 , q0
F
ab LM
73
F q0 ,q5
q5
q4
a
q0
a
a
b
q1
q2
q3
* q0 , abaa q4 , q5
aaba L(M )
F
74
F q0 ,q5
q5
q4
a
q0
a
a
b
q1
q2
q3
* q0 , aba q1
F
aba LM
75
q5
q4
a
q0
a
a
b
q1
q2
q3
LM ab* {aa}
76
Formally
The language accepted by NFA
M is:
LM w1, w2 , w3 ,...
where
* (q0 , wm ) {qi , q j ,..., qk ,}
and there is some
qk F (accepting state)
77
w LM
* (q0 , w)
qi
w
q0
qk
w
w
qk F
qj
78
© Copyright 2026 Paperzz