The L(2,1)-labelling of
Ping An,
Yinglie Jin,
Nankai University
Z
*
N
An L(2,1)-labelling of a graph G is nonnegative
real-valued function f : V (G) [0, ) such that :
(i) |f(x) − f(y)| ≥ 2 if x and y are adjacent,
(ii)|f(x) − f(y)| ≥ 1 if the distance of x and
y is 2.
The −number (G) of G, is the minimum
range over all L(2,1)-labellings.
(G) min max{ f (v) : v V (G)}
f
Let
K n be a complete graph on n vertices. Then
( K n ) 2n
Let Pnbe a path on n vertices. Then (i) ( P2 ) 2,
(ii) ( P3 ) ( P4 ) 3, and (iii) ( Pn ) 4 for n 5 .
1
3
0
1
3
0
2
0
3
1
4
0
3
1
Let C n be a cycle of length n. Then (Cn ) 4 for
any n .
Note V (Cn ) {v0 , v1 ,vn1}
(1) If n 0 (mod 3) , then define
0, if i 0 (mod 3)
f (vi ) 2, if i 1(mod 3)
4, if i 2 (mod 3)
(2) If n 1(mod 3) ,then redefine the above f at
v n4 ,vn1 as
0,
3,
f (vi )
1,
4,
if i n 4
if i n 3
if i n 2
if i n 1
(2) If n 2 (mod 3) ,then redefine the above f at
v n2 and vn 1 as
1, if i n 2
f (v i )
3, if i n 1
Griggs and Yeh proposed a conjecture
(G)
2
Griggs and Yeh (1992) obtained an upper bound
(G) 2
2
Chang and Kuo (1996) proved that
(G)
2
Kr a l and Skrekovski (2003) improved the upper bound
to be
'
(G) 1
2
with maximum degree △ ≥ 2.
The graph ( Z )
*
N
For the ring of integers modulo
*
N , let Z N be its set of nonzero
*
zero-divisors. ( Z N ) is a simple
*
graph with vertices Z N and for
*
distinct x, y Z N ,the vertices x
and y are adjacent if and only
if xy 0 .
For example : N=15, Z {3,5,6,9,10,12}
*
N
12
3
5
10
6
( Z )
*
N
9
Note
N p1n1 p2n2 prnr
p1 p2 pr , ni 0(i 1,, r )
*
Let m1 , m2 be elements of Z N , we define
m1 ~ m2 if (m1 , N ) (m2 , N )
For example:
[ p1 ] {m : (m, N ) p1 , m Z N* }
l1 l2
lr
[
p
p
p
Every equivalence class has the form 1 2
r ],
where 0 li ni , i 1,2,, r and neither li ni nor
li 0 (i 1,2,r ) can be satisfied simultaneously.
l
l
l
For any equivalence class [ p11 p22 prr ], it is a
clique if
ni
li
2
for i 1,2, r . Otherwise it is
an independent set.
For any equivalence class [n] [ p1l1 p2l2 prlr ] ,
N
| [n] | ,
n
where
is the Euler -funtion.
For example : N=15, Z {3,5,6,9,10,12}
*
N
[3]={3,6,9,12};3[5]={5,10} 12
5
[3]
10
[5]
6
( Z )
*
N
9
In this paper, we showed that
( Z ) p1 1
*
N
Where △ is the maximum degree and p1
is the minimum prime number in the prime
factorization.
N 36 2 3
2
Z
*
N
2
has equivalence classes:
[2] {2,10,14,22,26,34};
[2 2 ] {4,8,16,20,28,32};
[3] {3,15,21,33};
[3 ] {9,27};
2
[2 3] {6,30};
[2 32 ] {18};
[2 2 3] {12,24}.
( Z ) 16 2 1 17
*
N
{17}
[2 32 ]1
[2 3]2
[22 3]2
{1,3,5,7,14,15} {8,9,10,11,12,13} {0,2}
{4,6}
[2]6
[ 2 2 ]6
2
[3]4
[3 ]2
{8,9,10,11}
{1,15}
( Z N* )
© Copyright 2026 Paperzz