ASP_MP_S2j Biophotonics Prof. Dr. Rainer Heintzmann Institut für Physikalische Chemie Friedrich-Schiller-Universität Jena Lecture 1 1 IPC Friedrich-Schiller-Universität Jena Content 1. Introduction 2. Contrast modes in light microscopy 2.1 Bright field microscopy 2.2 Dark field microscopy 2.3 Phase contrast microscopy 2.4 Polarisation microscopy 2.5 Differential interference contrast 3. Optical coherent tomography 4. Molecular many electron systems: electronic and nuclear movement 5. UV-Vis absorption 5.1 Franck-Condon principle 5.2 Electronic chromophores 5.3 Polarimetry & circular dichroism 6. Fluorescence spectroscopy 6.1 Stokes shift 6.2 Fluorescence life time 6.3 Fluorescence quantum yield 6.4 Steady state fluorescence emission 6.5 Fluorescence excitation spectroscopy 2 IPC Friedrich-Schiller-Universität Jena Content 7. Fluorescence microscopy 7.1 Fluorochromes 7.2 Confocal fluorescence microscopy 7.3 FRET 7.4 FRAP, iFRAP, FLIP 7.5 Ultramicroscopy / SPIM / HILO 7.6 Multi-photon microscopy 7.7 4Pi microscopy 7.8 STED microscopy 7.9 linear and nonlinear structured illumination 7.9 PALM/STORM 8. Vibrational microspectroscopy 8.1 Normal modes 8.2 IT-absorption microspectroscopy 8.3 Raman microspectroscopy 8.4 Protein structure determination 8.5 Biomedical diagnostics 8.6 Resonance Raman spectroscopy 8.7 SERS 3 IPC Friedrich-Schiller-Universität Jena Content 9. Non-linear Raman microspectroscopy 9.1 Hyper Raman 9.2 Coherent anti-Stokes Raman scattering (CARS) 9.3 Stimulated Raman microscopy 10. Future trends in non-linear microscopy 4 IPC Friedrich-Schiller-Universität Jena 1. Introduction Biophotonics a highly interdisciplinar approach Sciences Medicine Biology Physics (wealth of disciplines) Biophotonics Chemistry Engineering Optical Engineering Medical Engineering 5 IPC Friedrich-Schiller-Universität Jena 1. Introduction Light-Matter Interactions as the basis for Biophotonics 6 IPC Friedrich-Schiller-Universität Jena 1. Introduction: Light-Matter Interactions Light-Matter Interactions incident light Anregungslicht Absorption reflected light reflektiertes Licht tissue Gewebe Scattering transmittierteslight Licht transmitted gestreutes Licht scattered light Reflection 7 Refraction a(n) =absorption cross-section aS = scattering cross-section I(z) = intensity in depth z I0 = incident intensity I(n) = transmitted intensity IPC Friedrich-Schiller-Universität Jena 1. Introduction: Light-Matter Interactions UV IR Vis 10000 Absorptionskoeffizient / cm-1 gesamtes bloodBlut melanosom Melanosom 1000 100 Aorta aorta water Wasser 10 1 skin Haut 100 epidermis Epidermis 1000 10000 Wellenlänge / nm 8 IPC Friedrich-Schiller-Universität Jena 1. Introduction: Light-Matter Interactions + + - E Polarisation P : Dipole moment per unit volume 9 IPC Friedrich-Schiller-Universität Jena 1. Introduction: Light-Matter Interactions Linear Polarisation P 0 E (1) 0 : permittivi ty of free space : linear susceptibi lity (1) n 1 (1) 10 2 IPC Friedrich-Schiller-Universität Jena 1. Introduction: Light-Matter Interactions Nonlinear Polarisation P 0 (1) E ( 2) E 2 (3) E 3 ... 0 : permittivi ty of free space ( 2) , (3) : second and third order nonlinear susceptibi lities for convergence: E E E ( 3) 11 3 ( 2) 2 (1) IPC Friedrich-Schiller-Universität Jena 1. Introduction: Light-Matter Interactions Nonlinear Polarisation P 0 (1) E ( 2) E 2 (3) E 3 ... E E cos(t ) E : amplitude 2n : frequency yields: P P0 P1 cos(t 0 ) P2 cos( 2t 1 ) P3 cos(3t 2 ) ... Re P0 P1eit P2ei 2t P3ei 3t ... 12 IPC Friedrich-Schiller-Universität Jena 1. Introduction: Light-Matter Interactions Example E E0 E cos(t ) E0 : DC field E : amplitude 2n : frequency Terms in P: (1) E0 (1) E cos(t ) DC Name DC polarizability optical polarizability (refractive index) DC DC hyperpolarizability ( 2) Ew 2 linear electrooptic effect (Pockels Effect) DC DC hyperpolarizability ( 2) E 2 cos(2t ) 2 second harmonic generation (3) E 3 cos(3t ) 3 third harmonic generation Kerr effect (n=n0+n2I) ( 2) E0 2 ( 2) E0 E cos(t ) (3) E 2 cos(t ) 13 Frequency IPC Friedrich-Schiller-Universität Jena 1. Introduction: Light-Matter Interactions Process (1) Linear absorption Spontaneous emission (Fluorescence) Reflection Elastic scattering Inelastic scattering: Ramanscattering Diffraction 14 (2) Second harmonic generation (SHG) Sum-frequency generation (SFG) Difference-frequency generation (DFG) Optical parametric amplification (3) Third harmonic generation (THG) Two-photon absorption (TPA) CARS (Coherent Anti-StokesRaman-Scattering) IPC Friedrich-Schiller-Universität Jena 2. Contrast modes in light microscopy : 1D monochr. wave Absorption k 2 l 2n lvac nk0 n Dispersion nR : real part of refractive index nI : imaginary part of refractive index Phase difference Amplitude difference Refractive indices Wavelength l Bright field 15 Dark field Phase contrast Differential phase contrast IPC Friedrich-Schiller-Universität Jena c 2. Contrast modes in light microscopy: Bright field 2.1 Bright field transmission (absorption = imaginary part of refractive index) An object, keeping the phase of an incoming wave constant and decreasing the Amplitude difference amplitude is called amplitude object. Contrast is A0 –A1,2 Bright filed microscopy is the most simple and basic light microscopy method Sample is illuminated from below by a light cone In case there is no sample in the optical path a uniform bright image is generated Wavelength l An amplitude object absorbs light at certain wavelengths and therefore reduces the amplitude of the light passing through the object Uniform bright field image 16 Bright field image of Moss reeds IPC Friedrich-Schiller-Universität Jena
© Copyright 2026 Paperzz