Generation and characterization of mid-infrared femtosecond pulses C. Ventalon(1), K. J. Kubarych(2), J. M. Fraser(3), A. Bonvalet et M. Joffre Laboratoire d’Optique et Biosciences INSERM U451 – CNRS UMR 7645 Ecole Polytechnique – ENSTA 91128 Palaiseau cedex http://www.lob.polytechnique.fr (1) (2) (3) Boston University University of Michigan Queen’s University Motivations Time-resolved infrared spectroscopy Multidimensional spectroscopy Vibrational coherent control 1. Generation of infrared femtosecond pulses a) Optical rectification (inverse electro-optic effect) P ( 2 ) (t ) = ε 0 χ ( 2 ) E (t ) E * (t ) ω ω0 0 IR b) Difference frequency mixing P ( 2 ) (t ) = ε 0 χ ( 2 ) E2 (t ) E1* (t ) ω 0 IR ω1 ω2 Infrared generation using optical rectification Milieu non-linéaire Impulsion visible de 12 fs • Optical rectification : P ( 2 ) (t ) = ε 0 χ ( 2 ) E0 (t ) 2 P(t) E0(t) t ∂ 2 E n2 ∂ 2 E ∂ 2 P ( 2 ) (t ) • Propagation : − = μ0 ∂t 2 ∂z 2 c 2 ∂t 2 Impulsions infrarouges nL ∂P ( 2) E (t ) = − 2ε 0 c ∂t A. Bonvalet et al., Appl. Phys. Lett., 67, 2907 (1995) Infrared generation using optical rectification Fréquence [THz] 50 40 30 20 1.5 Inténsité spectrale Autocorrelation 2 1 0.5 0 -400 -200 0 200 Retard [fs] 400 4 8 12 16 Longueur d'onde [μm] A. Bonvalet et al., Appl. Phys. Lett., 67, 2907 (1995) Frequency mixing : one or two stages ? 1) One stage λs = 1.6 to 0.97 µm OPA 800 nm λi = 1.6 to 4.5 µm Simple but less efficient above 4.5 µm due to two-photon absorption 10 μm 5 μm 800 nm 400 nm Transparency of nonlinear materials KDP BBO LBO YCOB GCOB KTA KTP RTA KNBO3 LiNBO3 LiIO3 LiInS2 ZnGeP2 AgGaS2 AgGaSe GaSe Te 1 longueur d'onde [µm] 10 100 J. Non-crystalline solids 352, 2439 (2006) Frequency mixing : one or two stages ? 1) One stage λs = 1.6 to 0.97 µm OPA 800 nm λi = 1.6 to 4.5 µm Simple but less efficient above 4.5 µm due to two-photon absorption 2) Two stages λs = 1.6 to 1.2 µm DFG OPA 800 nm λi = 1.6 to 2.4 µm λIR=5 to 20 µm OPA + DFG 10% laser: Hurricane Spectra Physics 100fs @ 800 nm 0.8 mJ 1 kHz Energie [μJ] 5 2% Sapphire continuum Pump : 1st stage BBO Signal + idler longueur d'onde [μm] 14 10 8 7 6 5 4 Pump : 2nd stage Phase matching idler calcite Phase matching 4 3 η=25% signal 2 IR LWP filter Delay τ 1 0 GaSe 20 30 40 50 60 70 Fréquence [THz] 80 Kaindl et al., JOSA B 17, 2086 (2000) Ventalon et al., JOSA B 23, 332 (2006) IR generation through parametric cascade downconversion J.M. Fraser, C. Ventalon Parametric cascade downconverter for intense ultrafast mid-IR generation beyond the Manley-Rowe limit Appl. Opt. 45, 4109 (2006). 2. Characterization Detection method linear with the electric field S (ω ) = R(ω ) E (ω ) S (t ) = R(t ) ⊗ E (t ) Electro-optic detection R(ω) Radio µ-waves IR Visible UV RX 1 nm 100 PHz 10 nm 10 PHz 100 nm 1 µm 1 PHz 100 THz 10 µm 100 µm 10 THz 1 THz 1 mm 100 GHz 10 mm 10 GHz 100 mm 1 GHz 1 cm 10 cm 10 MHz 100 cm 1 MHz λ 100 MHz ω/2π Electro-optic detection χ ( 2) + PBS - C. Kubler, R. Huber, S. Tubel, A. Leitenstorfer Ultrabroadband detection of multi-terahertz field transients with GaSe electro-optic sensors: Approaching the near infrared Appl. Phys. Lett. 85, 3360-3362 (2004) Measurements based on quadratic detectors intensity [A.U.] Quadratic and stationary detection results in a signal depending on |E(ω)|² only : Information on the spectral phase can be retrieved only using nonlinear optics ! 8 7 6 5 4 3 2 1 0 -600 -400 -200 0 200 400 600 Delay [fs] • Second-order nonlinear autocorrelation • FROG : B. A. Richman et al., Opt. Lett. 22, 721 (1997) ; T. Witte et al., Opt. Lett. 27,131 (2002) • Pump-probe : S. Yeremenko et al., Opt. Lett. 27, 1171 (2002) • Time-domain HOT SPIDER : C. Ventalon et al., Opt. Lett. 28, 1826 (2003) • Chirped-Pulse Up-conversion : K. J. Kubarych et al., Opt. Lett. 30, 1228 (2005) The problem of IR detection |ε(ω)|² Spectral domain of CCD cameras ω 0 ωIR Translation from IR to visible |ε(ω)|² Spectral domain of CCD cameras |ε(ω−ω0)|² ω ω0 ωIR 0 ωIR ω0 Sum Frequency Mixing (SFM) ωIR + ω0 ωIR + ω0 Spectrometer CCD Translation from IR to visible Regen Compressor OPA DFG Spectrometer χ(2) K.J. Kubarych, M. Joffre, A. Moore, N. Belabas, D. M. Jonas Mid-infrared electric field characterization using a visible charge-coupled-device-based spectrometer Opt. Lett. 30, 1228-1230 (2005) IR ZAP SPIDER Regen Compressor OPA DFG Spectrometer χ(2) K.J. Kubarych, M. Joffre, A. Moore, N. Belabas, D. M. Jonas Mid-infrared electric field characterization using a visible charge-coupled-device-based spectrometer Opt. Lett. 30, 1228-1230 (2005) IR ZAP SPIDER K.J. Kubarych, M. Joffre, A. Moore, N. Belabas, D. M. Jonas Mid-infrared electric field characterization using a visible charge-coupled-device-based spectrometer Opt. Lett. 30, 1228-1230 (2005) 3. Mid-infrared pulse shaping Indirect mid-IR pulse shaping E IR (ω ) = ∫ E P (ωP ) ES* (ωS )dωP dωSδ (ωP − ωS − ωIR ) ≈ ES* (ωP − ωS ) H.-S. Tan, E. Schreiber, W.S. Warren, Opt. Lett. 27, 439 (2002) Indirect mid-IR pulse shaping H.-S. Tan, E. Schreiber, W.S. Warren, Opt. Lett. 27, 439 (2002) Direct mid-IR pulse shaping S.-H. Shim, D. B. Strasfeld, E. C. Fulmer, M. T. Zanni Femtosecond pulse shaping directly in the mid-IR using acousto-optic modulation Opt. Lett. 31, 838-840 (2006) Conclusion ¾ The reliability of mid-infrared femtosecond sources (5-20 µm) based on OPA is nowadays comparable to that of visible femtosecond sources. ¾ Efficiency remains limited due to small energy of infrared photons and to the use of two amplification stages. There is room for improvement through the use of new nonlinear materials or of primary laser sources directly in the near infrared (1-2µm).
© Copyright 2026 Paperzz