Efficient and Secure Multiparty
Computations Using a Standard
Deck of Playing Cards
Takaaki Mizuki
Tohoku University
CANS 2016 (16:30-17:00, Nov. 15, 2016, Milan)
Contents
1. Introduction
2. Niemi-Renvall Protocols
3. Our AND Protocol
4. Our XOR Protocol
5. Our Copy Protocol
6. Conclusion
2
Contents
1. Introduction
2. Niemi-Renvall Protocols
3. Our AND
Protocol
1.1 Mainstream
Card-Based
Protocols
1.2 Use
a Standard
Deck of Playing Cards
4. of
Our
XOR Protocol
1.3 Our Results
5. Our Copy Protocol
6. Conclusion
3
It is known that
secure multi-party computation
can be performed using red and black cards.
? ? ? ?
4
Using two cards of different colors, we can deal with
Boolean values, based on the following encoding:
=0
=1
5
=0
=1
Based on this encoding, a player can commit his/her
private input bit to a pair of face-down cards.
a ∈{0,1}
? ?
called a commitment
a
6
=0
=1
a ∈{0,1}
? ?
a
called a commitment
if a 0
if a 1
? ?
? ?
7
NOT computation
=0
=1
? ?
? ?
a
a
8
NOT computation
? ?
=0
? ?
a
=1
? ?
a
Reverse
the order
9
AND computation
=0
=1
? ?
? ?
? ?
a
b
a∧b
There are many protocols for secure AND computation.
10
6-card AND protocol [11]
??
??
a
b
=0
=1
??????
??????
??????
??????
????
a∧b
[??? ???]
????
a∧b
[11] T. Mizuki and H. Sone, Six-Card Secure AND and Four-Card Secure XOR,
FAW 2009, LNCS 5598, pp. 358–369, 2009.
11
6-card AND protocol [11]
??
??
a
b
=0
=1
??????
??????
??????
??????
????
a∧b
[??? ???]
????
The details will be explained later. a∧b
[11] T. Mizuki and H. Sone, Six-Card Secure AND and Four-Card Secure XOR,
FAW 2009, LNCS 5598, pp. 358–369, 2009.
12
XOR computation
4-card XOR protocol [11]
? ?
? ?
? ?
a
b
a+b
=0
The details are omitted.
=1
[11] T. Mizuki and H. Sone, Six-Card Secure AND and Four-Card Secure XOR,
FAW 2009, LNCS 5598, pp. 358–369, 2009.
These protocols
cannot be executed
with a standard deck
of playing cards.
They need custom-made cards.
14
Almost all existing protocols were designed for
custom two-colored cards.
There is one exception: Niemi-Renvall protocols
[13] can be executed with standard playing cards.
[13] V. Niemi and A. Renvall,
“Solitaire zero-knowledge,”
Fundamenta Informaticae,
vol. 38, pp. 181–188, 1999
Use of a standard deck of playing cards
We assume the following deck of 52 cards
(each card has a unique natural number):
3 4
5 6
face-down ? ? ? ? ? ?
52
…
1 2
…
face-up
?
Niemi and Renvall [13] considered an encoding rule:
i < j
i j =0
i > j
i j =1
17
Niemi and Renvall [13] considered an encoding rule:
i < j =0
i > j =1
Example:
1 2 =0
2 1 =1
18
We can naturally consider a commitment as well:
1
2
i < j =0
? ?
i > j =1
{1,2}
[a]
If a 0
If a 1
? ?
? ?
1 2
2
1
We call such a set {1,2} a base of the commitment.
19
Under this encoding rule on standard playing cards:
A NOT computation is trivial.
→ just to reverse the order
i < j =0
i > j =1
Niemi and Renvall [13] constructed:
•
AND protocol
•
XOR protocol
20
Niemi-Renvall AND protocol [13]
5
? ?
{1,2}
[a]
? ?
{3,4}
[b]
21
Niemi-Renvall AND protocol [13]
5
? ?
? ?
{1,2}
[a]
{3,4}
[b]
5
? ?
2
3
{1,4}
[ab]
A random cut (= cyclic shuffle) is applied an
average of 9.5 times.
Rotate in a circular motion
22
# of
AND computation
Niemi-Renvall [13] (Sect. 2)
# of shuffles
cards
avg.
fixed
5
9.5
0
23
# of
AND computation
Niemi-Renvall [13] (Sect. 2)
# of shuffles
cards
avg.
fixed
5
9.5
0
4
7
0
XOR computation
Niemi-Renvall [13] (Sect. 2)
24
Our results
We will propose more efficient protocols:
Utilizing random bisection cuts
Simulating the existing protocols [11] + α
based on custommade cards
[11] T. Mizuki and H. Sone, Six-Card Secure AND and Four-Card Secure XOR,
FAW 2009, LNCS 5598, pp. 358–369, 2009.
25
Our results
We will propose more efficient protocols:
Utilizing random bisection cuts
Simulating the existing protocols [11] + α
Switch two halves randomly
26
# of
AND computation
Niemi-Renvall [13] (Sect. 2)
# of shuffles
cards
avg.
fixed
5
9.5
0
4
7
0
XOR computation
Niemi-Renvall [13] (Sect. 2)
27
# of
# of shuffles
cards
avg.
fixed
Niemi-Renvall [13] (Sect. 2)
5
9.5
0
Ours (Sect. 3)
8
0
4
4
7
0
AND computation
XOR computation
Niemi-Renvall [13] (Sect. 2)
28
# of
# of shuffles
cards
avg.
fixed
Niemi-Renvall [13] (Sect. 2)
5
9.5
0
Ours (Sect. 3)
8
0
4
Niemi-Renvall [13] (Sect. 2)
4
7
0
Ours (Sect. 4)
4
0
1
AND computation
XOR computation
29
# of
# of shuffles
cards
avg.
fixed
Niemi-Renvall [13] (Sect. 2)
5
9.5
0
Ours (Sect. 3)
8
0
4
Niemi-Renvall [13] (Sect. 2)
4
7
0
Ours (Sect. 4)
4
0
1
AND computation
XOR computation
Fewer shuffles and
finite-runtime
30
# of
# of shuffles
cards
avg.
fixed
Niemi-Renvall [13] (Sect. 2)
5
9.5
0
Ours (Sect. 3)
8
0
4
Niemi-Renvall [13] (Sect. 2)
4
7
0
Ours (Sect. 4)
4
0
1
AND computation
XOR computation
Minor issue:
we have 52 cards!
31
Contents
1. Introduction
2. Niemi-Renvall Protocols
3. Our AND Protocol
4. Our XOR Protocol
5. Our Copy Protocol
6. Conclusion
32
# of
# of shuffles
cards
avg.
fixed
Niemi-Renvall [13] (Sect. 2)
5
9.5
0
Ours (Sect. 3)
8
0
4
Niemi-Renvall [13] (Sect. 2)
4
7
0
Ours (Sect. 4)
4
0
1
AND computation
XOR computation
33
Niemi-Renvall AND protocol [13]
5
? ?
{1,2}
[a]
? ?
{3,4}
[b]
34
Niemi-Renvall AND protocol [13]
5
? ?
{1,2}
[a]
5 ????
5 ????
? ?
{3,4}
[b]
(a,b)
(0,0)
(0,1)
(1,0)
(1,1)
seq. of cards
5 1 3 2 4
5 1 4 2 3
5 2 3 1 4
5 2 4 1 3
35
Niemi-Renvall AND protocol [13]
5 ????
5 ????
(a,b)
(0,0)
(0,1)
(1,0)
(1,1)
sequence
5 1 3 2 4
5 1 4 2 3
5 2 3 1 4
5 2 4 1 3
If we somehow
deleted 2 and 3 :
(a,b)
(0,0)
(0,1)
(1,0)
(1,1)
sequence
5 1 3 2 4
5 1 4 2 3
5 2 3 1 4
5 2 4 1 3
36
Niemi-Renvall AND protocol [13]
If we somehow
deleted 2 and 3 :
(a,b)
(0,0)
(0,1)
(1,0)
(1,1)
sequence
5 1 3 2 4
5 1 4 2 3
5 2 3 1 4
5 2 4 1 3
1 4 =0
4 1 =1
5 ? ?
{1,4}
[ab]
…we would get a
desired commitment!
37
Niemi-Renvall AND protocol [13]
5
? ?
{1,2}
[a]
? ?
{3,4}
[b]
5 ????
5 ????
Thus, we want to delete 2 and 3 so that the two
cards following 5 will be a desired commitment.
→ Utilizing a random cut (= cyclic shuffle)
38
Niemi-Renvall AND protocol [13]
5 ????
Rotate in a circular motion
5 ????
?????
Apply a random cut and reveal the first card. Unless
the face-up card is 2 or 3 , turn over the card, apply
a random cut, and reveal the first card again.
39
Niemi-Renvall AND protocol [13]
5 ????
5 ????
?????
Delete 2 and 3 (Avg. # of 6.5 trials)
???
40
Niemi-Renvall AND protocol [13]
5 ????
5 ????
?????
Delete 2 and 3 (Avg. # of 6.5 trials)
???
Search 5 ( Avg. # of 3 trials )
5 ??
41
Niemi-Renvall AND protocol [13]
5 ????
5
5 ????
? ?
? ?
{1,2}
[a]
{3,4}
[b]
?????
Delete 2 and 3 (Avg. # of 6.5 trials)
???
5 ??
Search 5 ( Avg.
of ?
3 trials )
5 #?
{1,4}
[ab]
42
# of
# of shuffles
cards
avg.
fixed
Niemi-Renvall [13] (Sect. 2)
5
9.5
0
Ours (Sect. 3)
8
0
4
Niemi-Renvall [13] (Sect. 2)
4
7
0
Ours (Sect. 4)
4
0
1
AND computation
XOR computation
43
# of
# of shuffles
cards
avg.
fixed
Niemi-Renvall [13] (Sect. 2)
5
9.5
0
Ours (Sect. 3)
8
0
4
Niemi-Renvall [13] (Sect. 2)
4
7
0
Ours (Sect. 4)
4
0
1
AND computation
XOR computation
44
Niemi-Renvall XOR protocol [13]
? ?
{1,2}
[a]
? ?
{3,4}
[b]
4
? ?
3
{1,2}
[ab]
A random cut (= cyclic shuffle) is applied an
average of 7 times.
Omit the details
45
# of
# of shuffles
cards
avg.
fixed
Niemi-Renvall [13] (Sect. 2)
5
9.5
0
Ours (Sect. 3)
8
0
4
Niemi-Renvall [13] (Sect. 2)
4
7
0
Ours (Sect. 4)
4
0
1
AND computation
XOR computation
46
Contents
1. Introduction
2. Niemi-Renvall Protocols
3. Our AND Protocol
4. Our XOR Protocol
5. Our Copy Protocol
Let me explain
“XOR” first.
6. Conclusion
47
Contents
1. Introduction
2. Niemi-Renvall Protocols
3. Our AND Protocol
4. Our XOR Protocol
5. Our Copy Protocol
6. Conclusion
48
Idea
Simulating the 4-custom-card XOR protocol [11]
? ?
? ?
? ?
a
b
a+b
=0
=1
[11] T. Mizuki and H. Sone, Six-Card Secure AND and Four-Card Secure XOR,
FAW 2009, LNCS 5598, pp. 358–369, 2009.
49
????
{1,2}
[a]
????
{3,4}
[b]
????
????
????
1 2 ??
{3,4}
[ab]
2 1 ??
[??
??]
{3,4}
[ab]
50
????
{1,2}
[a]
????
{3,4}
[b]
????
????
????
Input commitments
? ?
{1,2}
[a]
? ?
1 2 ??
{3,4}
[b]
{3,4}
[ab]
2 1 ??
[??
??]
{3,4}
[ab]
51
????
{1,2}
[a]
????
{3,4}
[b]
????
????
????
Rearrange the
sequence:
? ? ? ?
1 2 ??
{3,4}
[ab]
[??
??]
? ? ? ?
2 1 ??
{3,4}
[ab]
52
cut:
???? Apply a random bisection
????
{1,2}
[a]
{3,4}
[b]
[
????prob. of 1/2
????
]
? ? ? ?
????
? ?? ?
prob. of 1/2
1 2 ??
? ? ? ?
{3,4}
[ab]
(a)
[??
??]
(b)
2 1 ??
{3,4}
[ab]
53
????
{1,2}
[a]
????
{3,4}
[b]
????
Rearrange the sequence:
????
(a)
????
? ? ??
(b)
? ? ??
1 2 ??
{3,4}
[ab]
2 1 ??
??]
? ? ??
{3,4}
[??
[ab]
? ? ??
54
????
{1,2}
[a]
????
{3,4}
[b]
????
????
(a)
1 2 ??
? ? ?{3?
,4}
????
[ab]
? ?
[??
??{]1,2}
[a]
??
{3,4}
[b]
2 1 ??
(b)
{3,4}
[ab]
? ? ??
55
????
{1,2}
[a]
????
{3,4}
[b]
(a)
? ?
????
??
{1,2}
[a]
????
????
{3,4}
[b]
{3,4}
[ab]
(b)
[??
? ?
??]
1 2 ??
??
2 1 ??
{3,4}
[ab]
{1,2}
[a]
{3,4}
[b ]
56
????
(no information leaks)
Reveal
{1,2}
????
{3,4}
[a(a)
] [b]
????
? ?
??
????
{1,2}
[a]
{3,4}
[b]
????
(b)
{3,4}
[ab]
? ?
??
[?? ??]
{1,2}
[a]
1 2 ??
2 1 ??
{3,4}
[ab]
{3,4}
[b ]
57
????
Reveal
{1,2}
????
{3,4}
[a(a)
] [b]
????
? ?
??
????
{1,2}
[a]
1
2
{3,4}
[b]
1 2 ??
????
(b)
{3,4}
[ab]
? ?
??
[?? ??]
{1,2}
[a]
? ?
2
1
2 1 ??
? ?
{3,4}
[ab]
{3,4}
[b ]
58
????
Reveal
{1,2}
????
{3,4}
[a(a)
] [b]
????
? ?
??
????
{1,2}
[a]
a=0
1
{3,4}
[b]
0
????
(b)
[a]
? ?
1 2 ??
{3,4}
[ab]
? ?
??
[?? ??]
{1,2}
2
2
1
2 1 ??
? ? {3,4}
[ab]
{3,4}
[b ]
59
????
Reveal
{1,2}
????
{3,4}
[a(a)
] [b]
????
? ?
??
????
{1,2}
[a]
a=0
1
{3,4}
[b]
{3,4}
1 2 ??
{3,4}
[ab]
? ?
??
[?? ??]
[a]
? ?
[ab]
0
????
(b)
{1,2}
2
2
1
2 1 ??
? ? {3,4}
[ab]
{3,4}
[b ]
60
????
Reveal
{1,2}
????
{3,4}
[a(a)
] [b]
????
? ?
??
????
{1,2}
[a]
a=0
1
{3,4}
[b]
{3,4}
1 2 ??
{3,4}
[ab]
? ?
??
[?? ??]
[a]
? ?
[ab]
0
????
(b)
{1,2}
2
{3,4}
[b ]
a=1
2
1
2 1 ??
? ? {3,4}
[ab]
1
{3,4}
[ab]
61
????
Reveal
{1,2}
????
{3,4}
[(a)
a] [b]
????
? ?
??
????
{1,2}
[a]
{3,4}
a=1
1
[b]
2
0
????
1 2 ??
{3,4}
[ab]
(b)
? ?
??
[?? ??]
{1,2}
[a]
? ?
{3,4}
[b ]
2
1
2 1 ??
? ? {3,4}
[ab]
1
62
????
Reveal
{1,2}
????
{3,4}
[(a)
a] [b]
????
? ?
??
????
{1,2}
[a]
{3,4}
a=1
1
[b]
2
0
????
[ab]
{3,4}
[ab]
? ?
??
[?? ??]
[a]
{3,4}
1 2 ??
(b)
{1,2}
? ?
{3,4}
[b ]
2
1
2 1 ??
? ? {3,4}
[ab]
1
{3,4}
[ab]
63
????
{1,2}
[a]
????
{3,4}
[b]
????
1
2
??
????
{3,4}
[ab]
????
1 2 ??
{3,4}
[ab]
2
[?? ??]
1
2 1 ??
??
{3,4}
{3,4}
[ab]
[ab]
64
????
{1,2}
[a]
????
{3,4}
[b]
? ?
????
? ?
{1,2}
[a]
????
{3,4}
[b]
????
1 2 ??
{3,4}
[ab]
[??
??]
2 1 ??
??
{3,4}
[ab]
{3,4}
[ab]
65
# of
# of shuffles
cards
avg.
fixed
Niemi-Renvall [13] (Sect. 2)
5
9.5
0
Ours (Sect. 3)
8
0
4
Niemi-Renvall [13] (Sect. 2)
4
7
0
Ours (Sect. 4)
4
0
1
AND computation
XOR computation
66
Contents
1. Introduction
2. Niemi-Renvall Protocols
3. Our AND Protocol
4. Our XOR Protocol
5. Our Copy Protocol
6. Conclusion
67
Outline
Simulating the 6-custom-card AND protocol [11]
Straightforward simulation does not work; we
need some modification.
? ?
? ?
? ?
a
b
a∧b
=0
=1
68
6-custom-card AND protocol [11]
??
??
a
b
???? ??
a
0
=0
=1
??????
??????
b
??????
????
??????
[??? ???]
a∧b
????
a∧b
69
??
??
a
b
=0
??????
???? ??
a
0
=1
??????
b
??????
? ?
? ? ? ? ????
??????
[???
???]
a
0
a∧b
b
????
a∧b
70
??
??
a
b
???? ??
a
0
b
??????
=0
=1
??????
??????
Rearrange the sequence:
? ? ? ? ? ?
????
??????
[???
???]
a∧b
? ? ? ? ? ?
????
a∧b
71
??
a
= 0 cut:= 1
Apply a random bisection
??
? ? ? ? ?
?
b
??????
[
???? ??
of 1/2
a
b
0 prob.
? ? ? ?? ?
??????
(a)
??????
[???
???]
]
??????
prob. of 1/2
? ? ? ?? ?
????
(b)
a∧b
????
a∧b
72
??
??
a
b
??????
??????
???? ??
a
b
0Rearrange
the sequence:
(a)
??????
? ? ? ?? ?
??????
? ? ? ?? ?
[??? ???]
(b)
? ? ? ?? ?
????
a∧b
????
? ? ? ?? ?
a∧b
73
??
??
a
b
??????
??????
???? ??
a
0
(a)
b
? ? ? ?? ?
??????
? ? ? ?? ?
??????
a
[???
0
???]
b
a
0
b
????
(b)
a∧b
? ? ? ?? ?
????
a-
a∧b
b
0
74
??
??
a
b
=0
??????
Reveal
???? ??
(a)
a
0
=1
??????
b
? ? ? ?? ?
??????
a
0
b
(b)
??????
? ? ? ?? ?
[???
a-
??
b ?] 0
????
a∧b
????
a∧b
75
??
??
a
b
??????
??????
Reveal
????(a)
??
a
0
b
? ? ? ?? ?
? ?? ?
a
??????
0
b
(b)
??????
? ? ? ?? ?
b ?] 0
a
[??? ??
????
a∧b
? ?? ?
????
a∧b
76
??
??
a
b
Reveal
????(a)
??
a
0
??????
??????
a=0
b
=0
=1
? ?? ?
? ? ? ?? ?
a
??????
0
b
(b)
??????
? ? ? ?? ?
b ?] 0
a
[??? ??
a=1
????
a∧b
? ?? ?
????
a∧b
77
??
??
a
b
Reveal
????(a)
??
a
0
??????
??????
a=0
b
=0
=1
? ? ? ?? ?
? ?? ?
a
??????
0
b
a∧b
(b)
??????
? ? ? ?? ?
b ?] 0
a
[??? ??
a=1
????
a∧b
? ?? ?
????
a∧b
a∧b
78
??
??
a
b
Reveal
????(a)
??
a
0
??????
??????
a=1
b
=0
=1
? ?? ?
? ? ? ?? ?
a
??????
0
b
(b)
??????
? ? ? ?? ?
b ?] 0
a
[??? ??
a=0
????
a∧b
? ?? ?
????
a∧b
79
??
??
a
b
Reveal
????(a)
??
a
0
??????
??????
a=1
b
=0
=1
? ? ? ?? ?
? ?? ?
a
??????
0
b
a∧b
(b)
??????
? ? ? ?? ?
b ?] 0
a
[??? ??
a=0
????
a∧b
? ?? ?
????
a∧b
a∧b
80
??
??
a
b
=0
??????
???? ??
? ?? ?
a
0
=1
??????
b
a∧b
????
??????
? ?? ?
??????
a∧b
[???
???]
a∧b
????
a∧b
81
??
??
a
b
???? ??
a
0
=0
=1
??????
??????
b
??????
????
a∧b
??????
????
[???
???]
a∧b
What if we apply this to a
standard deck of cards?
82
? ?
5
{1,2}
[a]
6
? ?
{3,4}
[b]
straightforward simulation
83
? ?
5
6
? ?
{1,2}
{3,4}
[a]
1
2
[b]
? ? ? ?
{5,6}
[ab]
or
1
2
? ? ? ?
{3,4}
[ab]
84
? ?
5
6
? ?
{1,2}
{3,4}
[a]
1
2
[b]
? ? ? ?
{5,6}
[ab]
a=0
or
1
2
? ? ? ?
{3,4}
[ab]
a=1
When the base of the commitment is known,
the value of a leaks.
→ needs some modification
85
Use 8 cards:
? ?
{1,2}
[a]
? ?
5
6 7
8
{3,4}
[b]
86
? ?
{1,2}
[a]
? ?
6 7
5
8
{3,4}
[b]
? ?
{5,6}
[0]
? ?
{7,8}
[0]
87
? ?
{1,2}
[a]
? ?
6 7
5
8
{3,4}
[b]
? ?
{5,6}
[0]
[
? ?
{7,8}
[0]
? ? ? ?
]
88
? ?
{1,2}
[a]
6 7
5
? ?
8
{3,4}
[b]
? ?
{5,6}
[0]
[
{7,8}
[0]
? ? ? ?
? ?
{5,6},{7,8}
[0]
? ?
]
? ?
{5,6},{7,8}
[0]
89
? ?
{1,2}
[a]
6 7
5
? ?
8
{3,4}
[b]
We call this an
opaque
commitment
pair.
? ?
{5,6}
[0]
[
{7,8}
[0]
? ? ? ?
? ?
{5,6},{7,8}
[0]
? ?
]
? ?
{5,6},{7,8}
[0]
90
? ?
{1,2}
[a]
? ?
{3,4}
[b]
? ?
{5,6},{7,8}
[0]
? ?
{5,6},{7,8}
[0]
91
? ?
{1,2}
[a]
? ?
{3,4}
[b]
? ?
{5,6},{7,8}
[0]
? ?
{5,6},{7,8}
[0]
Make the base of the commitment to b opaque.
92
? ?
? ?
{1,2}
{5,6},{7,8}
[a]
[0]
Make the base of the commitment to b opaque.
? ?
{3,4}
[b]
? ?
{5,6},{7,8}
[0]
93
? ?
? ?
{1,2}
{5,6},{7,8}
[a]
[0]
Make the base of the commitment to b opaque.
? ?
{3,4}
[b]
? ?
{5,6},{7,8}
[0]
Apply the
procedure of the
XOR protocol
94
? ?
? ?
{1,2}
{5,6},{7,8}
[a]
[0]
Make the base of the commitment to b opaque.
? ?
{3,4}
[b]
3
? ?
{5,6},{7,8}
[0]
XOR
? ?
4
{5,6},{7,8}
[b]
95
? ?
{1,2}
[a]
? ?
{5,6},{7,8}
[0]
? ?
{5,6},{7,8}
[b]
We got an opaque commitment pair to 0 and b .
96
? ?
? ?
{1,2}
[a]
{5,6},{7,8}
[0]
? ?
{5,6},{7,8}
[b]
Apply the procedure of the existing AND
protocol [11] (introduced before) :
??????
??????
[??? ???]
??????
??????
97
Then,
? ?
? ?
{1,2}
[a]
1
2
{5,6},{7,8}
{5,6},{7,8}
[b]
[0]
? ? ? ?
{5,6},{7,8}
[ab]
? ?
or
2
1
? ? ? ?
{5,6},{7,8}
[ab]
98
Reveal the two cards after shuffling them.
1
2
? ? ? ?
or
2
1
? ? ? ?
{5,6},{7,8}
{5,6},{7,8}
[ab]
[ab]
The base of the commitment is found, and we have:
? ?
{5,6}
[ab]
or
? ?
{7,8}
[ab]
99
How many shuffles (random bisection cuts)?
1. Producing an opaque commitment pair
2. Changing the base
3. Applying the existing AND protocol [11]
4. Finding the base
→ 4 shuffles in total
100
# of
# of shuffles
cards
avg.
fixed
Niemi-Renvall [13] (Sect. 2)
5
9.5
0
Ours (Sect. 3)
8
0
4
Niemi-Renvall [13] (Sect. 2)
4
7
0
Ours (Sect. 4)
4
0
1
AND computation
XOR computation
101
Contents
1. Introduction
2. Niemi-Renvall Protocols
3. Our AND Protocol
4. Our XOR Protocol
5. Our Copy Protocol
6. Conclusion
102
Niemi-Renvall copy protocol [13]
5
? ?
6
{1,2}
[a]
3
4
5
? ?
6
{1,2}
[a]
? ?
{3,4}
[a]
A random cut (= cyclic shuffle) is applied an
average of 4.5 times + fixed 1 time.
We omit the details.
103
# of
# of shuffles
cards
avg.
fixed
total
6
4.5
1
5.5
Secure copy
Niemi-Renvall [13] (Sect. 2)
104
?? ?? ??
{1,2}
[a]
{3,4}
[0]
??????
{5,6}
[0]
??????
??????
??????
?? ??
{3,4}
[a]
[??? ???]
{5,6}
[a]
?? ??
{3,4}
[a]
{5,6}
[a]
# of
# of shuffles
cards
avg.
fixed
total
Niemi-Renvall [13] (Sect. 2)
6
4.5
1
5.5
Ours (Sect. 5)
6
0
1
1
Secure copy
106
# of
# of shuffles
cards
avg.
fixed
total
Niemi-Renvall [13] (Sect. 2)
5
9.5
0
9.5
Ours (Sect. 3)
8
0
4
4
Niemi-Renvall [13] (Sect. 2)
4
7
0
7
Ours (Sect. 4)
4
0
1
1
Niemi-Renvall [13] (Sect. 2)
6
4.5
1
5.5
Ours (Sect. 5)
6
0
1
1
AND computation
XOR computation
Secure copy
107
Combining AND/XOR/NOT/copy protocols, one
can construct a protocol for any function.
x1
x2
x3
x4
x5
??
MAJ(x1, x2, x3, x4, x5)
Contents
1. Introduction
2. Niemi-Renvall Protocols
3. Our AND Protocol
4. Our XOR Protocol
5. Our Copy Protocol
6. Conclusion
109
Conclusion
MPC can be done with standard playing cards.
We reduced the number of required shuffles.
110
111
仕切りカードや輪ゴムを用い
How to implement
a random bisection cut?
RBCを実現する手法
Spinning throw
with a separator and a rubber band:
[Ueda, et al.,TPNC 2016]
112
© Copyright 2026 Paperzz