Analytics with Scanning Electron Microscopy A. Danilewsky • Energy Dispersive X-Ray Analysis EDX • Electron Back Scatter Diffraction EBSD Depth of Signals Sample surface Auger - elektrons Secondary electrons SE Back scatter electrons BSE X – rays: - Characteristic X - rays - Continuum X- rays Topographic contrast Electron beam Electron beam Many secondary electrons leave the sample Few secondary electrons leave the sample Characteristic X - Rays keV k α1: LIII → K k α2: LII → K k β : MIII→ K Relative Intensity of Characteristic X - Rays L shell consists of 3 subshells with quantum numbers n, l, j and spin m: lI: 2s – orbital n = 2, l = 0, j = ½, m = ± ½ max. 2 electrons => forbidden transition lII: 2p – orbital n =2, l = 1, j = ½, m = ± ½ => max. 2 electrons => kα2 – line lII: 2p – orbitals n = 2, l = 1, j = 3/2, m = ± ½, ± 3/2 max. 4 electrons => kα1 - line Intensity kα1 : kα2 = 2 : 1 Characteristic X - Rays Characteristic X – rays k α: L → K k β: M→ K Continuum X- rays X – Ray Detector sensor dewar liq. N2 • Si – crystal drifted by Li with FET (field effect transistor) • Be – window • collimator • cooling by liquid N2 (77 K) cold finger preamplifier distance adjustment collimator Si - crystal Be - window X – Ray Detector: Si – crystal drifted by Li X-ray photons generate electron hole pairs Semiconductor X – Ray Detector • Valence band of an intrinsic semiconductor is fully occupied • Conduction band of an intrinsic semiconductor is largely unoccupied • X-rays raise electrons from valence to conduction band (photo- and Auger electrons) • Electron – hole pairs move free in the crystal during their lifetime • Bias voltage across the detector moves charge carriers to opposite electrodes => signal/pulse • The number of electron – hole pairs is proportional to the energy of X-ray photons • Minimum energy is the energy gap of the semiconductor (Si: 1.1 eV) + energy of lattice vibrations + other physical effects => about 3.8 eV • Multi-channel analyser: 1024 channels set to 10 eV/channel => 0.5 – 10 keV Semiconductor X – Ray Detector: Silicon drifted by Li • Low leakage current => high resistivity Si (ultra pure) Ti – Si = 2.77.keV • Li as a donor compensates p-type conduction of Si at low temperature 1.74 keV the Si – structure against X- ray radiation damage •SiLi= stabilises • p – n - junction from undoped to Li – doped area • Only one pulse is is processed at a time. To many X-ray photons during the anlyser is busy: Ti = 4.51 keV => dead time: no other photons are counted ! Timescale: nano seconds e.g. 30 seconds counting time at 10% dead timekeV needs 33 seconds real time measurement • X-rays generated in the Si – detector crystal it-self: escape peak X – Ray Spectra M -lines K –lines at 80.8. keV L - lines K α1 K α2 L -lines keV Energy of of photons: Characteristic X-ray lines Number of photons: Concentration of element X – Rays: Absorption and Fluorescence e.g. Fe - Mn electron beam Mnkα ZAF – Correction: Fekα SE SE Z = atomic number A = absorption F = fluorescence X – Rays: Background Corrections Continuum spectrum: • Calculation from elements • Subtraction Energy dispersive X-ray analysis (EDX) BSE Oxford - Link System ISIS at Zeiss DSM 960 Acceleration voltage: 20 kV Magnification: x200 –x1000 Detector: Si:Li Qualitative mapping of elements: Al, Si, Ti, Ca, Fe, Mn Energy dispersive X-ray analysis (EDX) 200 µm 200 µm Si 200 µm Ti 200 µm 200 µm Al Fe Geometrie EBSD Bragg: nλ = 2d sin θ Electron Backscatter Diffraction EBSD Oxford - Link System Crystal Homogenous, anisotropic discontinuum with three-dimensional periodical arrangement of lattice elements r r r Basevectors a, b , c Angles α, β , γ Crystal Lattice r c 231 r a r b [231] r τ r r r r r r r τ = u ⋅ a + v ⋅ b + w ⋅ c = 2 ⋅ a + 3 ⋅ b + 1⋅ c straight line through the points 000 and 231: [231] Atomic Plane r c r a r b Indices to Weiß reciprocal Miller plane I 111 111 (111) plane II 122 1½½ (211) Zone and Zone Axis Zone axis Plain of the surface normal Crystal Structure Gitter Lattice Basis Base Crystal structure Cubic Crystal Systems Hexagonal Rhombohedral Tetragonal Orthorhombic Monoclinic Triclinic Cubic 14 Bravais Lattices Hexagonal Tetragonal Orthorhombic Monoclinic Triclinic Unit Cell Smallest assembly, which expresses the metric and includes all symmetry elements z.B.: F 4 3 m, Zinkblende structure Symmetry elements in two-dimensions Symmetry Mirror plane m Symmetry Transformations: Deckoperationen im Rotation axis 4-fold 2-fold Continuum and Kontinuum 6-fold 3-fold Translation Glide reflection Discontinuum Diskontinuum Principle of Symmetry 10 Symmetry elements of the Continuum : • Rotation axis 1, 2, 3, 4, 6 • Rotary inversion axis 3, 4, 6 • Inversion 1 oder i • Mirror plane m => 32 Crystal classes 10 Symmetry elements of the Continuum + Translation: • Glide-reflection plane a, b, c, d • Rotary inversion axis, z. B.: 41, 42, 43 => 230 Space groups Space Groups Tabulated in: International Tables for Crystallography, Vol A Asymmetric unit: Smallest portion of a crystal structure to which crystallographic symmetry can be applied to generate one unit cell. By application of all symmetry operations of the space group, the whole space is filled. 11 Laue - Groups Due to the phase problem, all diffraction patterns include an inversion center. => Centro- and noncentrosymmetric groups can not be distinguished Crystal system Laue - Group Acentric subgroups triclinic 1 1 monoclinic 2/m 2, m orthorhombic mmm 222, mm2 tetragonal 4/m 4/mmm 4, 4 4mm, 4m2, 422 trigonal 3 hexagonal 3m 6/m 6/mmm 3 3m, 32 6, 6 6mm, 6m2, 622 m3 m3m 23 43m, 432 cubic Structure Data Sample Orientation and Reference System transverse direction Information of EBSD - Pattern EBSD of Ge Indexed EBSD of Ge Demonstration of Sample Orientation Projection of the surface normal in a two-dimensional plain occurs analogous to the stereographic projection: => Pole Figure Pole Figure Corresponding to ~ [111] with Slightly Tilt and Rotation Inverse Pole Figure Polycrystalline Sample Few Alignment of Crystallites Polycrystalline Sample Alignment of Crystallites Corresponding to [101], Inverse Pole Figure Polycrystalline Sample Alignment of Crystallites, Inverse Pole Figure Reference System Demonstration of Orientation – Euler angle Orientation: Rotation of the sample-fixed coordinate system (Cartesian!) into the crystalfixed system of the discrete crystallite. Convention according to Bunge: a) Sample orientation ϕ1 - Rotation on perpendicular direction Φ - Rotation on longitudinal direction ϕ2 - Rotation on transversal direction b) Crystal orientation ϕ1 - Rotation in (001) Φ - Rotation on [100] ϕ2 - Rotation in (001) Mechanical Sample Preparation Mechanochemical Sample Preparation Sample Preparation Depth of penetration 10 - 100 nm Good polish Bad polish Sample Preparation by Ion Abrasion (111) - Twinning in polycrystalline Si back scatter electrons quality pattern (BSE) rolling normal transverse direction direction direction x 200 pixel size 92,6 µm Polycrystalline Si quality electrons pattern (BSE) back scatter transverse normal direction rollingdirection direction x 200 pixel size 24 µm Polycrystalline Si: Preferential growth direction 5 - 7° deviation from [110] Literature to Scanning Electron Microscopy • L. Reimer, G. Pfefferkorn: "Rasterelektronenmikroskopie", Springer 1977 • H. R. Wenk (Ed.): "Electron Microscopy in Mineralogy", Springer Verlag 1976 • L. Reimer: "Scanning Electron Microscopy", Springer 1983 • L. Reimer: "Elektronenmikroskopische Untersuchungs- und Präparationsmethoden", Springer 1967 • Schmidt, Peter Fritz Praxis der Rasterelektronenmikroskopie und Mikrobereichsanalyse / Peter Fritz Schmidt - Renningen-Malmsheim : Expert-Verlag, 1994 (Kontakt & Studium ; 444 : Meßtechnik) • Joy et al.: "Electron Channeling Pattern in the Scanning Electron Microscope", J. Appl. Phys. Vol 53, No 8 (1982) 439 - 461 • U. Holzhäuser: "Charakterisierung von Einkristallen mittels Electron Channeling Pattern", Diplomarbeit Universit@t Freiburg 1992 • Flegler, Heckmann, Klomparens, Elektronenmikroskopie, Spektrum Akademischer Verlag Berlin und Heidelberg, 1993 • Humphreys, "Reviw: Grain and subgrain characterisation by electron backscatter diffraction, J. of Mat. Sci. 36 (2001), 3833 – 3854 Literature to Scanning Electron Microscopy • and online: • "Grundlagen der Raster-Elektronenmikroskopie" http://www.reclot.de by Alexander Fels • "SEM Electron Backscattered Diffraction" by Dr Geoff Lloyd • "Crash Kurs Textur" http://www.texture.de/Multex-Dateien/crash.htm by Kurt Helming
© Copyright 2026 Paperzz