The 2010 Antarctic Ozone Hole and Ozone Science Summary A Report prepared for Refrigerant Reclaim Australia Paul Krummel, Paul Fraser and Nada Derek Centre for Australian Weather and Climate Research CSIRO Marine and Atmospheric Research March 2012 OMI - TOMS data used in this report Data from the Ozone Monitoring Instrument (OMI) on board the Earth Observing Satellite (EOS) Aura, that have been processed with the NASA TOMS Version 8.5 algorithm, were utilized again in our 2010 weekly ozone hole reports and in this final report. OMI continues the NASA TOMS satellite record for total ozone and other atmospheric parameters related to ozone chemistry and climate. In 2008 stripes of bad data began to appear in the OMI products, apparently caused by a small physical obstruction in the OMI instrument field of view. NASA scientists guess that some of the reflective Mylar that wraps the instrument to provide thermal protection has torn and is intruding into the field of view. On 24 January 2009 the obstruction suddenly increased and now partially blocks an increased fraction of the field of view, leading to the larger stripes of bad data that are seen in current OMI images. Affected data have been flagged and removed from the images. NASA thinks that some of the data may be recoverable, but a fix may take quite some time to create and test. However, once the polar night reduced enough then this was not an issue for determining ozone hole metrics, as there is more overlap of the satellite passes at the polar regions which essentially ‘fills-in’ these missing data. In June 2009, all of the OMI ozone data were reprocessed/updated by NASA. These were subsequently processed by CSIRO, which resulted in small changes in the ozone hole metrics. In mid-2007, a corrected version of all the Earth Probe TOMS (EPTOMS) data (1996-2005) was released. The correction addressed a degradation of the scanner mirror on TOMS that resulted in latitudinal dependent calibration errors. An empirical correction was applied based on the NOAA-16 SBUV/2 ozone record. The above mentioned reprocessed and corrected datasets are used throughout this report. The analyses of the 2006 – 2010 Antarctic ozone holes are based on OMI data only, whereas the analysis of the 2005 hole is based on both OMI and TOMS data, and the analysis of 2004 and earlier holes is based on TOMS data only. The 2010 Antarctic ozone hole Figure 1: Ozone hole ‘depth’ (minimum ozone, DU) based on OMI and TOMS satellite data. The 2010 hole (OMI data) is indicated by the thick black line, the holes for selected previous years 2002, 2004 (TOMS data) and 2006, 2008, 2009 (OMI data) are indicated by the thin orange, blue, red, green and pink lines respectively; the grey shaded area shows the 1979-2005 TOMS range and mean. Figure 1 shows the Antarctic ozone hole ‘depth’, which is the daily minimum ozone (DU) observed south of 35°S throughout the season. The 2010 ozone hole was relatively shallow. The minimum ozone level Page 1 of 1 th recorded in 2010 was 118 DU in early October, the 20 deepest hole recorded. The deepest hole ever was rd in 2006 (84 DU) during the second week of October, the second deepest in 1998 (86 DU) and the 3 deepest in 2000 (89 DU). Figure 2 shows the average amount of ozone (DU) within the Antarctic ozone hole throughout the 2010 th season. The minimum average ozone within the hole in 2010 was 165 DU in early October, the 18 lowest ever recorded, again indicating a relatively shallow hole. The lowest reading was in 2000 (138 DU), the rd second lowest in 2006 (143 DU) and the 3 lowest in 1998 (147 DU). Figure 2: Average amount (DU) of ozone within the Antarctic ozone hole throughout the season based on OMI and TOMS satellite data. The 2010 hole (OMI data) is indicated by the thick black line, the holes for selected previous years 2002, 2004 (TOMS data) and 2006, 2008, 2009 (OMI data) are indicated by the thin orange, blue, red, green and pink lines respectively; the grey shaded area shows the 1979-2005 TOMS range and mean. Figure 3 shows the Antarctic ozone hole area (defined as the area within the 220 DU contour) throughout the 2 th 2009 season. The maximum daily area of the hole (22.2 million km in late September) was the 19 largest 2 nd 2 rd hole ever, the largest in 2000 (29.8 million km ), the 2 largest in 2006 (29.6 million km ) and the 3 largest 2 2 th in 2003 (28.4 million km ). The 15-day average ozone hole area for 2009 was 21.6 million km , the 16 2 largest area ever recorded, with the largest in 2000 (28.7 million km ). Figure 3: Ozone hole area based on TOMS and OMI satellite data. The 2010 hole (OMI data) is indicated by the thick black line, the holes for selected previous years 2002, 2004 (TOMS data) and 2006, 2008, 2009 (OMI data) are indicated by the thin orange, blue, red, green and pink lines respectively; the grey shaded area shows the 1979-2005 TOMS range and mean. Figure 4 shows the daily (24 hour) maximum ozone deficit in the Antarctic ozone hole, which is a function of both ozone hole depth and area. This metric is not the amount of ozone lost within the hole each day, but is a measure of the accumulated loss summed over the lifetime of ozone within the hole as measured each th day. The maximum daily ozone deficit in 2010 was 26.1 million tonnes (Mt) in late-September, the 18 largest deficit ever, the largest was in 2006 (45.2 Mt). Integrated over the whole ozone-hole season, the total ozone deficit (the sum of the daily ozone deficits) was th about 1340 Mt of ozone in 2010, the 17 largest cumulative ozone deficit ever recorded, the largest was in 2006 (2579 Mt). Page 2 of 2 Daily ozone hole area maxima DU 2000 2006 1998 2003 2005 2001 1999 2009 2008 1996 1997 2007 1993 1992 1991 1987 1990 2010 1989 2004 2002 1985 1986 1984 1983 1988 1982 1980 1979 1981 1994 Year 138.3 143.3 146.7 147.5 148.6 148.8 149.3 150.0 150.5 150.6 151.3 154.6 155.2 156.3 162.5 162.6 164.4 164.7 166.2 166.7 169.8 177.1 184.7 190.2 192.3 195.0 199.7 210.0 210.2 210.2 NaN DU 2006 2000 2003 1994 1998 2008 2001 2005 2009 1999 1997 1996 1992 2007 1993 1991 1987 2010 1990 1989 2002 2004 1985 1986 1984 1983 1988 1982 1980 1981 1979 Year 45.2 44.9 43.4 42.7 41.1 39.6 38.5 37.7 35.7 35.3 34.5 33.9 33.5 33.0 32.6 26.6 26.2 26.1 24.3 23.6 23.2 22.8 14.5 10.5 9.2 7.0 6.0 3.7 0.6 0.6 0.3 Mt 2006 1998 2001 1999 1996 2000 2008 1994 2005 2003 1993 2009 2007 1997 1992 1987 2010 1990 1991 2004 1989 1985 2002 1986 1984 1988 1983 1982 1980 1981 1979 Year 2579 2420 2298 2250 2176 2164 2000 1982 1901 1894 1833 1809 1785 1759 1529 1366 1340 1181 998 975 917 630 575 346 256 198 184 73 13 4 1 Mt Integrated ozone deficit Year 84 86 89 91 91 93 94 96 97 99 101 102 103 104 105 108 108 109 111 118 124 131 140 144 154 162 170 192 194 195 NaN Daily maximum ozone deficit DU 2006 1998 2000 2003 2001 2005 1991 2009 1999 1997 2008 2004 1996 1993 1992 1989 2007 1987 1990 2010 1985 2002 1986 1984 1983 1988 1982 1980 1979 1981 1994 Daily minimum average ozone Year 93.4 93.5 96.8 98.9 99.9 101.9 102.6 102.7 104.0 106.0 107.2 108.5 111.5 112.2 113.4 115.7 116.0 117.8 120.4 123.9 131.8 136.0 150.3 156.1 160.3 169.4 183.3 200.0 204.0 214.7 NaN Ozone hole daily minima 10 km 2006 2000 1998 2001 1999 2003 2009 2005 1993 1996 1997 2008 1992 2007 1991 1987 2004 1990 1989 2010 1985 2002 1986 1984 1983 1988 1982 1980 1981 1979 1994 15-day average ozone hole minima Table 1. Antarctic ozone hole metrics based on TOMS/OMI satellite data - ranked by size or minima (Note: 2005 metrics are average of TOMS and OMI data) 15-day average ozone hole area Year 29.8 29.6 28.4 27.9 27.1 26.9 26.8 26.4 25.8 25.7 25.2 25.1 25.1 24.9 24.4 22.7 22.4 22.3 22.2 21.8 21.6 21.0 18.6 14.4 14.2 13.5 12.1 10.6 3.2 2.9 1.2 2 10 km 2000 2006 2003 1998 2005 2008 1996 2001 1993 1999 1994 2007 1997 1992 2009 2004 1987 1991 2010 2002 1989 1990 1985 1984 1986 1988 1983 1982 1980 1981 1979 6 Year 28.7 27.6 26.9 26.8 26.1 25.7 25.6 25.0 24.8 24.3 24.0 24.0 23.9 23.9 23.3 21.6 21.4 21.1 21.0 20.7 19.5 17.7 16.6 13.4 13.0 11.3 10.1 7.5 2.0 1.3 0.2 2 Rank 2000 2006 2003 1998 2008 2001 2005 1996 1993 1994 1992 1999 2007 2009 1997 2010 1987 2004 1991 1989 1990 2002 1985 1986 1984 1988 1983 1982 1980 1981 1979 6 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Page 4 of 4 Figure 4: OMI estimated daily ozone deficit (in millions of tonnes, Mt) within the ozone hole. The 2010 hole (OMI data) is indicated by the thick black line, the holes for selected previous years 2002, 2004 (TOMS data) and 2006, 2008, 2009 (OMI data) are indicated by the thin orange, blue, red, green and pink lines respectively; the grey shaded area shows the 1979-2005 TOMS range and mean. The estimated total (integrated) ozone loss for each year is shown in the legend. Table 1 contains all the metrics for all 30 ozone holes recorded since 1979 Table 1: The ranking of various metrics that measure the ‘size’ of the Antarctic ozone hole: 1 = lowest ozone minimum, greatest area, greatest ozone loss etc.; 2 = second largest…. Ozone hole depth is based on the minimum column ozone amount on any day during ozone hole season. 15-day average ozone hole depth is based on a 15-day moving average of the daily ozone hole depth. Minimum average ozone is the minimum daily average ozone amount (within the hole) on any day during ozone hole season. Daily ozone hole area is the maximum daily ozone hole area on any day during ozone hole season. 15-day average ozone hole area is based on a 15-day moving average of the daily ozone hole area. Daily maximum ozone deficit is the maximum ozone deficit on any day during ozone hole season. Ozone deficit is the integrated (total) ozone deficit for the entire ozone hole season. Page 3 of 3 Figure 5 shows the 15-day moving average of the minimum daily column ozone levels recorded in the hole since 1979 from TOMS and OMI data. This metric shows a consistent downward trend in ozone minima from the late 1970s until the mid-to-late-1990s, with a possible sign of ozone recovery by 2010. The 1998-2001 mean was 97±3 DU, while the 2003-2006 mean (not including 2004) was 104±9 DU, and the 2007-2010 mean was 112±9 DU. There is the suggestion that ozone is recovering but the uncertainties are such that the recovery is not statistically significant. Figure 5: Minimum ozone levels observed in the Antarctic ozone hole using a 15-day moving average of the minimum daily column ozone levels during the entire ozone season for all available years of TOMS (blue) and OMI (red) data. The polynomial fit (order 3) does not include the unusual (warm year) data seen in 1988 and 2002. The error bars represent the range of the daily ozone minima in the 15-day average window. Salby et al. (2011) have suggested that the satellite ozone data over Antarctica since 1997 are showing significant ozone recovery once the dynamically-induced ozone changes are removed from the ozone data. If we remove the significantly dynamically-influenced 2002 ozone data from Figure 5, the remaining data (1997-2010) show significant ozone growth (recovery) of 1.4±0.7 (1σ) DU/yr. Figure 6 shows the minimum daily average ozone levels within the ozone hole from 1979 to 2010 from TOMS and OMI data. This metric shows a consistent downward trend in average ozone from the late-1970s until the mid-1990s, with some sign of ozone recovery by 2010. The 1996-2001 mean was 148±5 DU while the 2005-2010 mean was 152±7 DU. Again this is suggestive of the commencement of ozone recovery, but the uncertainty intervals overlap. If we remove the significantly dynamically-influenced 2002 and 2004 ozone data from Figure 6, the remaining data (1997-2010) show significant ozone growth (recovery) of 1.3±0.5 (1σ) DU/yr. Page 5 of 5 Figure 6: The minimum daily average column ozone levels within the ozone hole during the entire ozone season for all available years of TOMS (blue) and OMI (red) data. The polynomial fit (order 3) does not include the data seen in the years (1988, 2002 and 2004) when the stratosphere was unusually warm. Figure 7 shows the maximum ozone hole area (15-day average) recorded since 1979 from TOMS and OMI data. Disregarding the two unusual years (1988, 2002) when the polar vortex broke up early, this metric suggests that the ozone hole has stopped growing, but has not yet started to decline in area. The 1996-2001 6 2 6 2 mean was (25.6±2.0) x10 km , while the 2005-2010 mean was (24.8±2.1) x10 km , again indicative of the commencement of possible ozone recovery, but not statistically significant. If we remove the significantly dynamically-influenced 2002 and 2004 ozone data from Figure 7, the remaining data (1997-2010) do not show a significant decrease in ozone hole area. The data suggest that a maximum in ozone hole area occurred after 1997, close to 2000. Figure 7: Maximum ozone hole area (area within the 220 DU contour) using a 15-day moving average during the ozone hole season, based on TOMS data (blue) and OMI data (red). The polynomial fit (order 3) does not include the unusual data seen in 1988 and 2002. The error bars represent the range of the ozone hole size in the 15-day average window. Figure 8 shows the integrated ozone deficit (Mt) from 1979 to 2010. The ozone deficit rose steadily from the late-1970s until the late-1990s/early 2000s, where it peaked at approximately 2300 Mt, and then started to drop back down. Excluding the warm years 2002 and 2004, this metric does not show evidence of statistically significant ozone recovery. The 1996-2001 mean was 2180±230 Mt while the 2005-2010 mean was 1902±402 Mt, suggesting the commencement of ozone recovery, but these means overlap significantly at the 1σ level. If we remove the significantly dynamically-influenced 2002 and 2004 ozone data from Figure 8, the remaining data (1997-2010) show a significant decline in ozone deficit 60±20 (1σ) Mt/yr. Page 6 of 6 Figure 8: Estimated total ozone deficit for each year in millions of tonnes (Mt), based on TOMS (blue) and OMI (red) satellite data. The solid line is a polynomial fit (order 3) to the data (TOMS up to 2005, OMI 2006 onwards) excluding the anomalously warm years of 1988, 2002 and 2004 (open squares). The most quoted (though not necessarily the most reliable) metric in defining the severity of the ozone hole is the average minimum ozone levels observed over Halley Station (British Antarctic Survey), Antarctica, throughout October (Figure 9). This was the metric that was first reported in 1985 to identify the significant ozone loss over Antarctica. Based on this metric alone, it would appear that October mean ozone levels over Halley may have started to increase again. The minimum ozone level was observed in 1993, which has been attributed to residual volcanic effects (Mt Pinatubo, 1991). Ignoring the warm years of 2002 and 2004, the mean October ozone levels at Halley Bay for 2005 to 2010 (153±10 DU) are higher than those observed from 1996 to 2001 (141±4 DU), although the 1 σ uncertainties just overlap. If we remove the significantly dynamically-influenced 2002 and 2004 ozone data from Figure 9, the remaining data (1997-2010) show significant ozone growth (recovery) of 3.2±1.0 (1σ) DU/yr. Figure 9: Total column ozone amounts (October mean) as measured at Halley, Antarctica, by the British Antarctic Survey from 1956 to 2010. The green line is a polynomial fit (order 3) to the data excluding the anomalously warm years of 1986, 1988, 2002 and 2004. Antarctic Ozone Recovery Ozone recovery over Antarctica is complex to model. Apart from the future level of ozone depleting chlorine in the stratosphere, temperature trends and variability in the stratosphere, the impact of major volcanic events and the future chemical composition (for example H2O, CH4 and N2O) of the stratosphere are likely to be important factors in determining the rate of ozone recovery. Model results and observations show that the solar cycle changes have maximum impact on tropical ozone and do not significantly impact on stratospheric ozone levels over Antarctica. Chlorine levels are likely to decline steadily over the next few decades at about 1% per year, leading to reduced ozone destruction. Figure 10 shows Equivalent Chlorine (ECl) and Effective Equivalent Chlorine (EECl), and their lagged values for the Antarctic (6 years) and mid-latitude (3 years) stratospheres, as described by Hofmann and Montzka (2009), but here derived from CSIRO and AGAGE global measurements of ODSs, including Cape Grim measurements and measurements in air trapped in Antarctic firn from Law Dome, Antarctica. ECl is relevant to ozone depletion over Antarctica while EECl is relevant to ozone depletion at mid-latitudes. ECl and EECl peaked at 4.5 ppb in 1995 and 3.3 ppb in 1994 respectively, falling to 4.2 and 2.9 ppb by 2010, declines of 8% and 12% respectively. Table 3 shows the species contributing to the declines in ECl (0.33 ppb) and the decline in EECl (0.39 ppb) since their peak values in 1995 and 1994 respectively. The decline since 1994/95 to 2010 is dominated by methyl chloroform, followed by methyl bromide, the CFCs and carbon tetrachloride. The halons and HCFCs have made an overall growth contribution to ECl and EECl since 1994/95. Page 7 of 7 The initial (1-2 decades) decline in ECl and EECl have been and will be dominated by the shorter-lived ODSs, such as methyl chloroform and methyl bromide, whereas the long-term decline will be dominated by CFCs and carbon tetrachloride. Based on ECl and EECl values from scenarios of ODS decline (Daniel and Velders, 2007), ozone recovery at mid-latitudes will occur at about the late-2040s and ozone recovery in the Antarctic stratosphere will occur about the mid-2070s. Hoffman and Montzka (2009) have defined an index that neatly describes the state of the atmosphere, in relation to stratospheric halogen (chlorine plus bromine) levels and ozone recovery at mid-latitudes (ODGIML) and over Antarctic (ODGI-A) – see discussion below. Figure 11 shows the CSIRO version of the ODGIML and ODGI-A indices derived from global AGAGE data including data from Cape Grim. Based on data up to 2010, the ODGI-A and ODGI-ML indices have declined by 15% and 31% respectively since peak ECl and EECl values in 1995, indicating that the atmosphere is 15% and 31% along the way toward a halogen level that should allow an ozone-hole free Antarctic stratosphere and a ‘normal’ (pre-1980s) ozone layer at midlatitudes. The CSIRO version of the ODGI uses ODS fractional release factors from Daniel and Velders (2007). Page 8 of 8 Table 3: Individual ODS contributions to the decline in ECl and EECl observed in the atmosphere in 2010 since their peak values (4.5 ppb in 1995 and 3.3 ppb in 1994 respectively). ECl decline ppb Cl EECl decline ppb Cl methyl chloroform 0.29 0.29 methyl bromide 0.13 0.13 CFCs 0.09 0.07 carbon tetrachloride 0.06 0.06 halons -0.09 -0.09 HCFCs -0.14 -0.06 Total decline 0.33 0.39 Species Figure 10: Equivalent and Effective Equivalent Chlorine (ECl, EECl – see text) derived from global measurements of all the major ODSs at Cape Grim and other AGAGE stations and in Antarctic firn air from Law Dome. ECl is lagged 6 years as a driver of Antarctic ozone depletion (dashed line), EECl is lagged 3 years as a driver of mid-latitude ozone depletion (dashed line). Arrows indicate dates when the mid-latitude and Antarctic stratospheres return to pre-1980s and preozone hole levels respectively. Figure 11: ODGI-A and ODGI-ML indices (Hofmann and Montzka, 2009) derived from AGAGE ODS data using ODS fractional release factors from Daniel and Velders (2007). Page 9 of 9 Figure 12 compares changes in ECl since the late 1970s to the cumulative ozone deficit as shown in Figure 8. Apart from the years with unusually warm stratospheres (1988, 2002, 2004, not shown), there is a strong correlation between ECl changes and cumulative ozone deficit (corr. coeff = 0.90), strongly supporting the dominant role of ECl in determining long term ozone trends over Antarctica and indicating that ozone recovery will become significant as ECl continues to fall (in the absence of major volcanic event(s) impacting on the stratosphere) over the next decade or more. Each ppb of ECl is responsible for about 1500 Mt of stratospheric O3 deficit within the hole. A similarly strong correlation (corr. coeff = -0.97) of ECl and ozone changes over Antarctica is also seen since the late 1950s-early 1960s, using the Halley ozone record (Figure 12). The warm stratosphere years (1986, 1988, 2002, 2004, not shown) do not fit this correlation and there is a suggestion of enhanced ozone depletion (up to 10%) in the post-Pinatubo years (1993-1995). Even if these Pinatubo-affected data are not considered, there is still evidence of significant ozone recovery in the Halley data. Each ppb of ECl is responsible for about 50 DU of O3 loss in the stratosphere over Halley in October. These data suggest that a 3-4 year lag for ECl based on tropospheric observations is more appropriate to correlate with stratospheric ozone metrics over Antarctica. Figure 12: Cumulative ozone deficit (Mt, Figure 10) in the Antarctic ozone hole and annual ECl changes (ppb, 3 year lag, solid line) since the late 1970s. Figure 13: Ozone changes (October monthly mean data) seen at Halley, Antarctica, since the mid-1950s to mid-1960s compared to the annual changes in ECl (difference from 1956-1662 mean) over the same time frame (with a 3 year lag). Page 10 of 10 Summary • The 2010 Antarctic ozone hole was of relatively small compared to holes from the past 15 years, which were all relatively large (except for anomalously warm years of 2002 and 2004). The 2010 hole th th ranked between 16 -20 over a number of metrics for the 31 holes assessed since 1979. • The 2000 and 2006 ozone holes were the largest ozone holes ever, depending on the metric that is used. • Most ozone metrics discussed in this report show signs that ozone recovery has commenced, once the influence of the dynamically-impacted ozone data from 2002 and 2004 are removed from the ozone record. • Comparison of trends in ECl and cumulative ozone deficit within the hole since the late 1970s suggest that ozone recovery may have commenced, although 2010 looks like a year with an unusually low ozone deficit. • The ECl data from observations and future scenarios suggest that ozone recovery at mid-latitudes will occur at about the early-2050s and Antarctic ozone recovery at about the mid-2070s. • The ODGI vales suggest that the atmosphere is about 15% along the path to Antarctic ozone recovery and 31% along the path to ozone recovery at mid-latitudes. • Changes in ECl and changes in ozone over Antarctica (satellite and Dobson) are highly correlated and the Dobson data at Halley suggest Antarctic ozone recovery has commenced. The correlation would likely be even more significant if temperature effects were removed from the ozone data. • The data suggest that a lag time of 3-4 years is more appropriate than the recommended 6 years for ECl over Antarctica, based on AGAGE global observations of ODSs Animations of the daily images from the 2010 ozone hole in both animated GIF and AVI formats can be downloaded from ftp://gaspublic:[email protected]/pub/ozone_hole/. Animations of the historical October 1-15 averages for all available years in the period 1979-2010 are also contained in this directory. To download, right click the file and select ‘Copy to folder …’. Definitions CFCs: chlorofluorocarbons, synthetic chemicals containing chlorine, once used as refrigerants, aerosol propellants and foam-blowing agents, that break down in the stratosphere (15-30 km above the earth’s surface), releasing reactive chlorine radicals that catalytically destroy stratospheric ozone. DU: Dobson Unit, a measure of the total ozone amount in a column of the atmosphere, from the earth’s surface to the upper atmosphere, 90% of which resides in the stratosphere at 15 to 30 km. Halons: synthetic chemicals containing bromine, once used as fire-fighting agents, that break down in the stratosphere releasing reactive bromine radicals that catalytically destroy stratospheric ozone. Bromine radicals are about 50 times more effective than chlorine radicals in catalytic ozone destruction. Ozone: a reactive form of oxygen with the chemical formula O3; ozone absorbs most of the UV radiation from the sun before it can reach the earth’s surface. Ozone Hole: ozone holes are examples of severe ozone loss brought about by the presence of ozone depleting chlorine and bromine radicals, whose levels are enhanced by the presence of PSCs (polar stratospheric clouds), usually within the Antarctic polar vortex. The chlorine and bromine radicals result from the breakdown of CFCs and halons in the stratosphere. Smaller ozone holes have been observed within the weaker Arctic polar vortex. Polar night terminator: the delimiter between the polar night (continual darkness during winter over the Antarctic) and the encroaching sunlight. By the first week of October the polar night has ended at the South Pole. Polar vortex: a region of the polar stratosphere isolated from the rest of the stratosphere by high west-east wind jets centred at about 60°S that develop during the polar night. The isolation from the rest of the atmosphere and the absence of solar radiation results in very low temperatures (less than -78°C) inside the vortex. Page 11 of 11 PSCs: polar stratospheric clouds are formed when the temperatures in the stratosphere drop below -78°C, usually inside the polar vortex. This causes the low levels of water vapour present to freeze, forming ice crystals and usually incorporates nitrate or sulphate anions. TOMS: the Total Ozone Mapping Spectrometer, is a satellite borne instrument that measures the amount of back-scattered solar UV radiation absorbed by ozone in the atmosphere; the amount of UV absorbed is proportional to the amount of ozone present in the atmosphere. UV radiation: a component of the solar radiation spectrum with wavelengths shorter than those of visible light; most solar UV radiation is absorbed by ozone in the stratosphere; some UV radiation reaches the earth’s surface, in particular UV-B which has been implicated in serious health effects for humans and animals; the wavelength range of UV-B is 280-315 nanometres. Acknowledgements The TOMS and OMI data are provided by the TOMS ozone processing team, NASA Goddard Space Flight Center, Atmospheric Chemistry & Dynamics Branch, Code 613.3. The OMI instrument was developed and built by the Netherlands's Agency for Aerospace Programs (NIVR) in collaboration with the Finnish Meteorological Institute (FMI) and NASA. The OMI science team is lead by the Royal Netherlands Meteorological Institute (KNMI) and NASA. This research is carried out under contract from RRA to CAWCR. References Daniel, J., & G. Velders, Halocarbon Scenarios, Ozone Depletion Potentials, and Global Warming Potentials, Chapter 8 in Scientific Assessment of Ozone Depletion 2006, Global Ozone Research and Monitoring Project-Report No. 50, 8.1- 8.39, WMO, Geneva, Switzerland, 2007. Hofmann, D & S. Montzka, Recovery of the ozone layer: the Ozone Depleting Gas Index, Eos, 90: 1, 1-2, 2009. Salby, M., E. Titova & L. Deschamps, Rebound of Antarctic ozone, Geophys. Res. Letts., 38, L09702, doi:10.1029/2011GL047266, 2011. Page 12 of 12
© Copyright 2026 Paperzz